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Abstract

Serverless computing became an interesting topic recently in the field of software
industry because of the benefits that brings to the organizations of managing and
deploying complex software that requires heavy computations. Many public cloud
providers offer Serverless services that can cope with organization needs for managing
and handle heavy load software applications where performance is a critical factor.
That leads to many studies in academia that tackled the performance of Serverless
in public cloud. However, the idea of applying Serverless using open source frame-
works became more popular to address the limitations of using Serverless provided by
public cloud providers specially for Internet of things, edge computing applications
which attracted researchers to study the performance of Serverless. In this work, we
studied the performance in terms of response time, throughput and success rate us-
ing container orchestrators to investigate their impacts on Serverless functions where
we evaluated 9 open source Serverless frameworks and did a comparisons between
them to select the best candidate for our study. The OpenFaas Serverless frame-
work was mainly selected based on its support for running under different container
orchestrators and ease of installing and configuring it among others that support
different container orchestrators. We conducted the experiment of this study using a
custom tool called faas-exp that we built for this purpose that facilitated infrastruc-
ture provisioning, configuration management, automation of test cases generation,
data analysis’s and visualization. Three container orchestrators were used on this
study Docker Swarm, kubernetes and Nomad in order to find the impact of container
orchestrator for the deployed Serverless functions. Our results showed that there is
a relationship between the container orchestrator and the performance of deployed
Serverless functions based on different computation requirements, programming lan-
guages/runtimes and warm & cold start.
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Abbreviations and Acronyms

API Application Programming Interface.
Async Asynchronous.
AWS Amazon Web Services.

cgroups  Control Groups.

CLI Command Line Interface.
CRUD Create, Read, Update, Delete.
FaaS Function as a Service.

GCP Google Cloud Platform.

HTTP HyperText Transfer Protocol.

[aaS Infrastructure as a Service.
[oT Internet of Things.
JS JavaScript.

JVM Java Virtual Machine.

NIST National Institute of Standards and Technol-
ogy.

PaaS Platform as a Service.
RESTful Representational state transfer.

SaaS Software as a Service.
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Sync Synchronous.

VM Virtual Machine.
VMM Virtual Machine Monitor.
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Chapter 1

Introduction

Software architecture is the main stage in software development life cycle, it helps
to build software that meets both business objectives and technical requirements.
Software architecture depicts the structure of the software, the interaction between
software components and external entities. It also shows the deployment of the soft-
ware. In the past, the monolithic architecture was a well known approach to build a
software in which all of its components combined into a single piece where everything
is developed and deployed as a single artifact [112]. Tt affects the scalability which
requires to deploy the whole software when need more resources to scale. Moreover,
the whole software will be affected if one of its components might be failed. The high
coupling between components will affect the whole software and affects the scaling ef-
ficiency and availability. Aforementioned can be avoided using different approaches.
Microservice is one of the approaches which decomposes the software into multiple
services where each service has single responsibility and well-defined boundaries, in-
tegrated with lightweight and general purpose communication protocols to build a
software [97]. In the past, software deployment requires from developer to purchase
bare metal machines and either installed them on-premise or leased rack space in
the data center [104]. Moreover, they had to over-provision their infrastructure to
account for scalability and resilience [110]. Using bare metal solution or leased rack
space cause to leave un-utilized resources for a considerable amount of time. The
rising of hardware virtualization improves the level of resource utilization outstand-
ingly using hypervisor-based virtualization which gives the ability to host multiple
virtual machines and run them in top of a single physical machine that helps to de-
ploy software across different virtual machines. This also allows to increase resource
utilization for single physical machine, create significant cost savings, simplify I'T
management, eliminate downtime, provision and deprovision resources on demand



and improve business continuity and disaster recovery. Virtualization opens the door
to pay more attention to the cloud computing to get better performance for sensi-
tive workload management of software services [109]. The elasticity provided by the
virtualization introduces a new cloud computing model IaaS (Infrastructure as a Ser-
vice) where new VMs can be provisioned in order to cope with increased workloads
[106]. Moreover, another model arises known as Platform-as-a-Service (PaaS) which
gives developers the flexibility for implementing, executing, and managing software
without the complexity of managing and maintaining the underlying infrastructure.
Container-based virtualization is a new type of virtualization that becomes more
popular recently which provides software on demand. The stability and maturity of
such technologies encourage developers to shift building software based on monolithic
architecture and decompose them into small pieces of software based on distributed
architecture using microservices. New cloud computing paradigm (Serverless) has
been arised because of highly adoption and usage of containers and microservices
architecture. Serverless computing has many definitions and it is one of the cloud
computing models which gives the ability to run event-driven and granularly billed
software without needing to address the operational logic [92] and it will be a suitable
architecture for workloads which have sporadic demands and for workloads that are
short, asynchronous or event-driven and concurrent [90]. Serverless shares some of
the characteristics of microservices but it is more granular than microservices, and
provides a much higher level of functionality. On the other hand, Function-as-a-
Service (FaaS) is a form of Serverless computing where the cloud provider manages
the resources, lifecycle, and event-driven execution of user-provided functions [92].
Serverless computing is offered and provided by most of the well known public cloud
providers like AWS, Azure and GCP who offers Serverless computing on their in-
frastructure. Developers can deploy their code in the form of function to the cloud
provider, and the provider is responsible for the execution, resource provisioning and
automatic scaling of the runtime environment [93]. It also helps to cut operational
cost and facilitate resource management and utilization. Most of the Serverless com-
puting offered by public cloud providers package function in a stateless container
that helps developers to focus on code without need to worry about managing the
underlying infrastructure, auto-scaling and paying only for usage. However, the pub-
lic cloud platforms have certain limitations related to vendor lock-in and restrictions
on the computation of the functions [105]. To cope with these limitations multiple
open source Serverless frameworks are available where Serverless can be deployed
to on-premise or even to public cloud infrastructure. Since Serverless function can
be deployed as a container, then using container orchestration can be useful to de-
ploy and manage functions. Recently, there is an increasing interest to implement



Serverless on a on-premise infrastructure using container orchestrations.

1.1 Motivation

Building and deploying software requires huge time and effort to release it to the
market but how much time is required to manage it 7. This is where a new cloud
computing paradigm called Serverless came to the surface, because it abstracts the
underlying operating systems and infrastructure. It does not mean there are no
servers, but it’s the responsibility of the cloud provider to allocate the resources and
developer does not need to worry about the server management. Moreover, it takes
care of resource scaling automatically based on software load. Organizations pay only
for the resources usage which means when the software really harness the resources,
they do not need to pay anything if software functions are not using any resources
where it explains the increasing adoption of Serverless computing which provided by
well known public cloud providers. However, regardless of the great benefits provided
by public platforms but there are some limitations need to be considered when it
comes to using public cloud. The multitenancy problem can affect system perfor-
mance, security concerns and robustness. Vendor lock-in is another serious problem
since each cloud provider also has limitations in terms of programming languages
supported, maximum execution duration, maximum concurrent executions and so
on [104]. All these limitations justifies the movement of organization toward using
Serverless on on-premise infrastructure where they can have full control over the in-
frastructure running the Serverless. As new technologies are emerging such as smart
home devices, self driving cars and augmented reality require new approaches to
deal with the network traffic generated by the IoT devices to enable such technolo-
gies [86]. Moreover, Edge computing play crucial roles in accelerating data streaming
for processing real-time data with low latency. On the other hand, it helps smart
software and devices to respond to data almost instantaneously, as its being created,
eliminating lag time [88]. Using Serverless on on-premise infrastructure can be incor-
porated at the edge of an IoT network which helps to execute small tasks and reduce
latency. With Serverless it is possible to deploy functions to the edge network where
each function can be triggered in response to an event. It is the responsibility of a
Serverless framework to handle auto-scaling for workloads that can varies from zero
to thousands of instances of function which helps to improve resources utilization.
Aforementioned, and based on increasing interests to study Serverless on on-premise
infrastructure and the ability to deploy function as container encouraged us to start
studying this topic. Adoption of Serverless on on-premise infrastructure can be done
using containers. Moreover, there are multiple implementations for open source or-



chestration frameworks that can help to deploy, manage and scale Serverless. The
following are good examples of open source frameworks: Kubernetes, Docker Swarm,
Nomad and Apache Mesos. The goal of this thesis is to evaluate the performance
of the Serverless functions that support running under different container orchestra-
tors. Also, the effect of the container orchestrators on the Serverless functions will be
investigated and measured under different configurations. The public cloud provider
AWS is used in this work as our infrastructure to investigate our research.



1.2 Research Questions

The main goal of this is to measure the performance of Serverless functions under
different container orchestrators and investigate if such orchestrators can affect the
deployed functions, so that the following research questions need to be answered

1. RQ1) What is the impact of container orchestrators on the Serverless functions
performance 7.

(a) RQ1.1 What is the impact of container orchestrators on response time of
Serverless function 7.

(b) RQ1.2 What is the impact of container orchestrators on throughput of
Serverless function 7.

(c) RQ1.3 What is the impact of container orchestrators on success rate of
Serverless function ?.

2. RQ2) How the performance of Serverless function is affected under different
workload requests 7.

(a) RQ2.1 How response time of Serverless function affected under different
workload requests ?

(b) RQ2.2 How throughput of Serverless function affected under different
workload requests ?

(c) RQ2.3 How success rate of Serverless function affected under different

workload requests ?

3. RQ3) How various computational requirements affect Serverless functions per-
formance 7.

(a) RQ3.1 How various computational requirements affect response time of
Serverless function 7.

(b) RQ3.2 How various computational requirements affect throughput of
Serverless function 7.

(c) RQ3.3 How various computational requirements affect success rate of
Serverless function 7.



4. RQ4) What is the effect of the runtimes/programming languages on the Server-
less functions performance 7.

(a) RQ4.1 What is the effect of using runtimes/programming languages on
response time of Serverless function 7.

(b) RQ4.2 What is the effect of using runtimes/programming languages on
throughput of Serverless function 7.

(¢) RQ4.3 What is the effect of using runtimes/programming languages on
success rate of Serverless function 7.

5. RQ5) What is the impact of COLD and WARM requests on the Serverless
functions performance 7

(a) RQ5.1 What is the impact COLD and WARM requests on response time
of Serverless function 7.

(b) RQ5.2 What is the impact COLD and WARM requests on throughput
of Serverless function 7.

1.3 Structure of thesis

The rest of this thesis is structured as follows. Chapter 2 introduces background
about virtualization, cloud computing, containers, microservices, container orches-
tration frameworks, Serverless computing and open source Serverless frameworks.
Chapter 3 discusses related work in the field of Serverless and focuses on the limita-
tions and gaps for the extant researches in Serverless computing. Chapter 4 provides
full details about the research methodology conducted to achieve the goal of the
research work. Chapter 5, presents the experiment results. Chapter 6 presents the
discussion about the experiment results. Finally, Chapter 7 provides conclusion,
threats to validity and future works.



Chapter 2

Background

The main goal of this chapter is to provide a basic background for some terminologies
and concepts that will be used during this thesis. Section 2.1 discusses the mircroser-
vices architecture. Section 2.2 presents virtualization concepts. Section 2.3 provides
basic information about the cloud computing and its different models. Section 2.4
introduces Docker as Linux Container. Section 2.5 discusses container orchestrations
for the selected platforms used in this research. Section 2.6 discusses the Serverless
computing. Finally, Section 2.7 discusses about the open source Serverless frame-
works

2.1 Microservices

Microservice architecture is one of the important topic in the field of software design
which has been getting a lot of attention among software developers and researchers
[123]. Companies like Netflix is one of the earlier immigrant of software from mono-
lithic to microservice architecture. Thus they moved their entire systems by decom-
posing them into hundreds of microservices based on cloud computing. Microservice
is a software architecture that is based on well-defined level of modularization, in
which software can be modularized as small set of services. Each service is imple-
mented and operated as an independent software, that allows communication with
other services using lightweight protocol. The modularity provided by microservice
increases software agility [96] as each service can be developed, deployed, operated
and scaled independently. Figure 2.1 shows how microservice and monolithic ar-
chitecture can be represented. Monolithic architecture wraps multiple services and
run them as single deployable. However, microservice decomposes the software into
small, independent services that can communicate using lightweight protocol. The
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Figure 2.1: Microservice and Monolithic Architecture

Scaling on monolithic architecture requires a redundant copies of the same software
since the the whole software should be scaled as one unit which causes extra unused
hardware. Moreover, as everything tied together, the modification process becomes
complex even for small changes which requires to redeploy the whole software and
any failure in one of the services could cause failure to the whole software. Monolithic
architecture forces technology lock-in as everything built in one unit which requires to
keep using same technology, language and framework. On the other hand, microser-
vice provides more advantages over monolithic. First, scaling microservice requires
only to scale the services need to be scaled. Second, the whole software will be
operational when one of the software services fails. Third, small changes is much
easier and will not introduce extra errors. Fourth, deployment of new changes do
not require to re-deploy the whole software as it only deploys the needed services.
Finally, microservice depends on technology heterogeneity, which allows each service
to use different technology than the other services to achieve the desired goals and
performance [91].



2.2  Virtualization

Virtualization gains more attraction in the recent years and is considered the corner-
stone of cloud computing. It allows single physical machine to run multiple virtual
instances on top of it where each instance is isolated, scaled, operated independently
from others. Moreover, it helps in resource computing utilization and cost reduction.
The credits goes to IBM for virtualization in 1960’s when they presented the idea
of M44/44X system [122]. Hypervisor-based virtualization is one of the most com-
mon virtualization techniques where Xen !, VMware 2 and KVM 2 are examples for
hypervisor-based virtualization. Hypervisor is a software which has a full control of
the underlying physical machine where it helps to manage the virtual machines using
Virtual Machine Monitor VMM component where it implements the VM hardware
abstraction, partitions and resource sharing that includes CPU, memory, and 1/O
for enabling virtualization of the underlying physical machine [118]. Figure 2.2 il-
lustrates the Hypervisor-based virtualization architecture where each VM is isolated
from each other and run its own operating system. This gives the underlying physical
machine the ability to run multiple operating systems. On the other hand, Container-
based virtualization is an alternative to the hypervisor since it provides a lightweight
virtualization layer on the operating system level where it allows to create multiple
isolated user-space instances on top of the same OS kernel [120]. Guest processes
running inside container are isolated from other containers because of the abstrac-
tion provided by containers on top of the OS kernel. Linux-VServer 4, OpenVZ
and Linux Containers (LXC) ¢ are implementations of Container-based virtualiza-
tion. Figure 2.3 shows the difference between Container-based and Hypervisor-based
virtualization.

1Xen: https://xenproject.org/

2VMware: https://www.vmware.com/

3KVM: https://www.linux-kvm.org/
4Linux-VServer: http://linux-vserver.org/
50OpenVZ: https://openvz.org/

SLXC: https://linuxcontainers.org/
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Figure 2.2: Hypervisor-based Virtualization Architecture [118§]
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2.3 Cloud Computing

Cloud computing becomes so popular in IT industries recently. The NIST (Na-
tional Institute of Standards and Technology) defines cloud computing as a model
which enables on-demand network access to a shared pool of computing resources
that includes servers, storage, networks, services and applications that can be eas-
ily provisioned and destroyed without management complexity or service provider
interaction [71]. Cloud computing frees users from requirements of configuring and
building their own infrastructure and allows them to pay only for the resources they
used which reduces the cost significantly. Moreover, it provides the flexibility for
scale in/out the infrastructure to fulfill user requests. On the other hand, it provides
security and protection techniques which includes secure connection, data encryp-
tion, key management, and security threat monitoring.

Cloud computing provides three different models that can be divided into Soft-
ware as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service

(TaaS).

1. Software as a Service (SaaS): A model where the services provided to the
user deployed over the Internet without needing to install or configure any
hardware or software, the only requirement is to be able to access the internet.
Service provider can charge users using subscription license ("pay-as-you-go")
model or make the services free without charging if there is a chance to generate
revenue using advertisements. [121]. Gmail, Outlook and Google Docs are
example of SaaS services.

2. Platform as a Service (PaaS): A model where service provider delivers a
development environment and the whole solution stack for users as a service
which allows them to deploy their own software on the provider infrastructure
without worrying about complexity of the underlying hardware and software
layers. Service provider provides all of the tools required to support the full
life cycle of building, deploying and delivering software to the end users over
the internet without needing to downloads or install anything for developers,
IT managers or even the end users. Heroku 7, AWS Elastic Beanstalk ® are
examples of PaaS services.

3. Infrastructure as a Service (IaaS): A model where service provider delivers
servers, storage, network, and operating system as service to the end users.

"Heroku, https://www.heroku.com/
8 AWS Elastic Beanstalk: https://aws.amazon.com/elasticbeanstalk/

11


https://www.heroku.com/
https://aws.amazon.com/elasticbeanstalk/

Users can use the infrastructure provided by service provider to create multiple
virtual machines upon needs without worrying about purchasing any servers,
network and storage equipment to build their own datacenter. AWS ?, GCP 10
and Azure ! are examples of IaaS services.

Cloud computing can be classified into 3 main classes as the following:

1. Public Cloud: The underlying computing infrastructure is provided by ser-
vice provider datacenters distributed across multiple locations over the world
where user knows nothing about the exact location of the cloud computing
infrastructure and the infrastructure is shared between all users. The services
provided by cloud computing can be accessed and available for any user who
wants to subscribe and uses them by paying only for the actual resources usage.

2. Private Cloud: The underlying computing infrastructure is reserved and ded-
icated only for a user and cannot be shared with others. Private Cloud is more
expensive and secure than Public Cloud.

3. Hyprid Cloud: Hybrid cloud combines public cloud and private cloud where
private cloud responsible for hosting sensitive software data and whereas public
cloud can be used for non sensitive software. Each cloud can be managed
independently from each others.

2.4 Docker

Docker !? is an open source platform which helps developers to build, ship and de-
ploy their software and package them into standard format called containers which
contains all the required dependencies for that software [114]. It also helps to isolate
resources using features provided by the Linux kernel where it depends on cgroups
and namespaces. cgroups allows hardware resources sharing and make them available
for containers and force them to use specific amount of resources such as memory
or CPU. Moreover, docker creates multiple namespaces for each container that are
related to process, network, file-system and inter process communication which helps
to isolate containers from each others [74]. Docker provides the flexibility for devel-
opers to focus on developing their software without worrying about the operating
system where software is running.

9AWS: https://aws.amazon.com/

OGCP: https://cloud.google.com/

1 Azure: https://azure.microsoft.com/en-us/
2Docker: https://www.docker.com/
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Docker has 5 main components which includes Docker daemon, Docker client,
Docker registry, Docker images and Docker containers as specified in Figure 2.4.
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Figure 2.4: Docker Architecture [117]

1. Docker Daemon: The Docker daemon called dockerd which represents the
docker RESTful API that accepts API requests. It also helps to manage and
create different types of docker objects which includes images, containers, vol-
umes, and networks.

2. Docker Client: A CLI client tool allows users to interact with Docker dae-
mon by running different commands for managing docker objects stored at the
docker server side.

3. Docker Registry: A place where docker images is stored. Docker Hub 2 is an
example of public docker registry where everyone can access any docker image
they want. It also gives an option to create private repositories for storing
docker images. Moreover, there are multiple private docker registries other
than Docker Hub provided by other service providers which includes: AWS
ECR ', JFrog Container Registry '® and many others.

3Docker-Hub: https://hub.docker.com/
14AWS ECR: https://aws.amazon.com/ecr/
15 JFrog: https://jfrog.com/container-registry/
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4. Docker Images: A Read-only template which contains instructions for how to
build containers. There is a base image for every docker image where operating
systems are the base images for any image that need to be created.

5. Docker Containers: A running instance of docker image called container.
Container encapsulates the whole binaries and requirements for the running
software [114].

2.5 Container Orchestrations

Container enables fast deployment with low overhead and provides high degree of
scalability for software based on microservice architecture [80]. Adopting container
solution for complex and large software becomes challenging and difficult as the
number and interdependencies of containers increases. This explains the need for
container management layer known as container orchestration to help provisioning
and managing containers by focusing on scheduling, resource allocation, scaling,
load balancing, monitoring and exposing services to the outside world. Kubernetes
16 Docker Swarm 7, Nomad ¥, Mesos ' and OpenShift ?° are examples of container
orchestrator frameworks. In this research we are going to focus only in Kubernetes,
Docker Swarm and Nomad.

2.5.1 Kubernetes

Kubernetes is an open source platform developed by Google and licensed under
Apache 2.0. Google started using container technology internally around 20 years
ago by building Borg system which is a cluster manager responsible for running
hundreds of thousands of jobs that hides the complexity of resource management
and failure from developers to let them focus on their code [119]. Google developed
an open source version of Borg called Kubernetes which is considered to be one of
the most popular container orchestrator platforms. Figure 2.5 shows the Kubernetes
Architecture.

Deploying Kubernetes produces cluster where it contains at least one master
node and one worker node. Kubernetes can be divided into two main parts: master

16Kubernetes: https://kubernetes.io/

"Docker Swarm: https://docs.docker.com/engine/swarm/
¥Nomad: https://www.nomadproject.io/

19Mesos: http://mesos.apache.org/

200penShift: https://www.openshift.com/
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Figure 2.5: Kubernetes Architecture [41]

components and worker components.

2.5.1.1 Master Components

Master components are the control plane of the cluster as they provide core function-
alities related to scheduling, configuration backing store, replication and API server.
The following components represent the master components:

1. API Server: A component that handles Kubernetes API which define how
the communication in the cluster happened and called kube-apiserver.

2. Configuration Store: A component that provides a consistent and reliable
data store for the whole cluster data where etcd ! key-value store is used.

3. Scheduler: A component called kube-scheduler that keeps watching the cre-
ated pod (group of containers) and select the available node to assign workload
for executing.

4. Controller Manager: A demon that embeds multiple controllers inside it
where it keeps watching the state of the cluster using API server and make the
required decision to change the current state to the desired one. Node controller
checks and responds when nodes go down, Replication controller maintains the

Zleted: https://etcd.io/
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desired number of pod replicas, Endpoint controller links between the service
and pod objects, Service Account controller handles service account creation
for new namespaces.

2.5.1.2 Worker Components

Worker components responsible only for running the actual workloads where pods
are running. The following components represent the worker components:

1. Agent: A component runs in each worker in the cluster called kubelet where it
guarantees to run the scheduled pods triggered from the scheduler component.
It also register the node with cluster.

2. Network Proxy: A component runs in each worker in the cluster called kube-
proxy that helps to forward users requests to the desired pods.

3. Container Runtime: A component runs in each worker in the cluster where
it manages the full lifecycle of containers. Kubernetes does not support only
Docker, it also supports containerd %2, cri-o 2* and rktlet 4.

2.5.2 Docker Swarm

Docker Swarm is an open source container orchestration platform licensed under
Apache 2.0 that supports running cluster of Docker Engines natively because it is
built into Docker Engine which enables developers to use Swarm mode easily. Docker
Swarm can be deployed using multiple nodes where the node represents a Docker
Engine installed on top of virtual or physical machine. Figure 2.6 shows the Docker
Swarm architecture where the following terms are important to understand it:

1. Manager Node: A node responsible for handling management functionalities
of cluster which includes tasks scheduling, maintaining cluster state, processing
API requests.

2. Worker Node: A node where the submitted tasks are running into. Manager
node decides on which worker node the tasks should be placed in.

22containerd: https://containerd.io/
Zeri-o: https://cri-o.io/
Zyktlet: https://kinvolk.io/
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3. Service: A template defines the tasks that need to be executed on the manager
or workers nodes. Each task represents a container to run where it contains
definition related to image type, number of containers replica and ports in
which container will listen to.

4. Task: An execution unit where is dispatched to one of the nodes in the cluster
in order to run and execute container.
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Figure 2.6: Docker Swarm Architecture [9]

2.5.3 Nomad

Nomad is an open source orchestration platform developed by Hashicorp and licensed
under Mozilla Public License 2.0. Nomad is not only limited for containerized soft-
ware but it also can be used with legacy and non-containerized software. Nomad
cluster can be deployed using multiple machines where the responsibility of these
machines focus on running the actual tasks and managing the whole cluster. Figure
2.7 Shows a high level architecture of Nomad where the following terms are important
to understand Nomad:

1. Client: A machine where the actual tasks will run. Every client in the cluster
will run a Nomad agent that helps the registration with servers. Moreover, it
keep watching any submitted task by servers in order execute them.
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2. Server: A machine responsible for managing the whole cluster. cluster usu-
ally contains multiple servers as followers and one leader per region in order to
increase the availability and handles fail-over scenarios. Moreover, server re-
sponsible for managing submitted jobs, clients, scheduling and task allocation.

3. Job: A template specification added by users which declares the tasks need to
be run inside Nomad cluster. It contains one or multiple task groups.

4. Task Group: A group of tasks which must be run as a whole unit, on the
same client and cannot be split.

<«—REPLICATION— SE RVE R —REPLICATION—>

— FORWARDING =» LEADER <4FORWARDING—

2

Figure 2.7: Nomad Architecture [49]

2.6 Serverless Computing

Adopting and shifting the software architectures towards microservice and contain-
ers lead to emerge a new cloud computing paradigm called Serverless computing for
running and deploying software. Serverless computing allows developers to use sim-
ple programming model when it comes to create and deploy software to cloud that
hides the complexity of the operational tasks. Moreover, Serverless computing pric-
ing model only charges for the execution time instead of resource allocation which
reduces the cost of the deployed software. Serverless computing is a commercial buzz
word that describes a new programming model for how small code snippets can be
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run and executed in the cloud without worrying about the underlying infrastructure
where the code runs [111]. It does not mean that there are no servers at all, but
it gives developers the flexibility to focus on writing their own code and leave the
infrastructure management related to provisioning, destroying, scaling and mainte-
nance to the cloud provider. Figure 2.8 shows how the abstraction is increased and
concerned about managing infrastructure is decreased while shifting towards Server-
less. It also obvious that function is the smallest unit of computing and sometimes
Serverless computing called function-as-service (FaasS).
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Decreasing concern (and control) over infrastructure implementation

Figure 2.8: Trends Toward Serverless [73]

Severless computing is a adopted by most of the major cloud providers including
Amagzon, Google, Microsoft where Amazon is the leading in this field.

2.7 Serverless Frameworks

The most Serverless frameworks which support multiple container orchestrators are
OpenFaas, OpenWhisk, IronFunctions and Fn frameworks. In the next subsections,
we are going to discuss them in details.

2.7.1 OpenFaas

OpenFaaS [62] is an open source Serverless computing framework under MIT license.
It can be installed and deployed to public/private clouds and run on top of multi-
ple container orchestrators including Kubernetes, OpenShift, Docker Swarm, Nomad
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and can also run on DC/OS ?°. The programming model of OpenFaaS is based on
functions [86]. It has an API gateway which is a RESTful component helps to access
functions and scale them automatically when get invoked by Alert Manager compo-
nent which retrieve different metrics from Prometheus. API gateway communicates
with underlying providers using provider (i.e., Kubernetes, Nomad, ..etc) to scale
functions based on demands. Watchdog is another component acts as HI'TP web-
server for handling user requests. OpenFaaS has a command line interface which
helps to package functions and deploy them as containers. Figure 2.9 shows the
OpenFaaS architecture and Figure 2.10 provides a conceptual model of how Open-
FaaS components interact with each other. OpenFaaS gives developers the ability
to run functions in any programming language they want. Functions are packaged
as Docker images which can be deployed and run in top of container orchestrator.
Moreover, OpenFaaS provides some ready templates for using different programming
languages C#, Go, NodeJS, Python and Ruby and also allows developers to build
custom templates if they need to. On the other hand, functions can be invoked using
HTTP and other event sources.

Functions as a Service

=
g Prometheus %‘gf Swarm Kubernetes
E & docker J

Figure 2.9: OpenFaaS Architecture [62]

DC/OS: https://dcos.io/
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2.7.2 OpenWhisk

Apache OpenWhisk [5] is an open source Serverless computing framework developed
by IBM and later incubated by Apache Foundation under the Apache 2.0 license.
The programming model of OpenWhisk is based on three primitives: functions,
rules and triggers [116] as shown in Figure 2.11. An Action is a stateless function
which is invoked as a response to an event and produces result. Trigger is class of
events generated from various sources and Rule map trigger to one/multiple actions.
OpenWhisk supports multiple container orchestrators which includes: Kubernetes,
Openshift and Mesos 26. It also support multiple programming languages and can be
triggered using HTTP, message queue and various events. OpenWhisk has 6 main
components specified in Figure 2.12 as the following:

1.

Nginx 2": A web server acting as an entry point of the whole system and used
as a reverse proxy and forward all requests to the controller component.

Controller Component. A RESTful API gateway for deployed actions which
helps to handle routing actions, authentication, authorisation and expose end-
points for CRUD operations on OpenWhisk models.

CouchDB Database . Store actions created by framework which includes
the actual code and their parameters and loades them from the controller once
the requester is authenticated. It also saved the results of the executed function.

Invoker component. The invoker loads the action from database and prepare
new Docker container to run action code inside it. It also helps to decide when
to invoke new container or re-use existing one.

. Apache Kafka ?°. It acts as message hub between controller and Invoker to

allow communications between them.

Consul 3°. Is a Distributed key-value store, which tracks the state of the
OpenWhisk installation [104].

26Mesos: http://mesos.apache.org/

2TNginx: https://www.nginx.com/
28CouchDB: https://couchdb.apache.org/
29 Apache Kafka: https://kafka.apache.org/
30Consul: https://www.consul.io/
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2.7.3 IronFunctions

IronFunctions [20] is an open source Serverless computing framework developed by
Iron.io 3! licensed under Apache 2.0. The main components of IronFunctions are
Fn, Functions, Runner and go-dockerclient [98]. The Fn is the CLI component
which helps in functions deployment, building container image, configuration route to
server. The Functions component is handling all requests generated from client and
forward them to deployed functions based on the routing configuration using CLI.
The go-dockerclient 32 component is a client implemented in GO language and used
by IronFunctions server side to communicate with Docker remote API. The Run-
ner component contains a collections of interfaces that allows to connect functions
and go-dockerclient. The IronFunctions supports two main container orchestrators:
Kubernetes and Docker Swarm. Functions can be deployed using multiple program-
ming languages and they can be triggered using synchronous and asynchronous calls.
Figure 2.13 shows IronFunctions Architecture In Production.
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Figure 2.13: IronFunction Architecture In Production [67]

3ron.io: https://iron.io/
32g0-dockerclient: https://github.com/fsouza/go-dockerclient
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2.74 Fn

Fn [77] is an open source Serverless framework developed by Oracle *? licensed under
Apache 2.0. The programming model of Fn is based on 2 primitives: function and
events. Function is simply the deployed code wrapped as docker image and events
are triggers which execute Fn functions. Figure 2.14 shows how function deployed
using Fn framework. Fn contains two main components: CLI and Fn Server. The
CLI helps to generate, configure, deploy and invoke functions using RESTful based
communication with Fn server. The Fn server handles API gateway, CRUD oper-
ations for events and functions, execute functions calls Synchronous/Asynchronous
and storing logs. The framework is pluggable and can be integrated with different
set of Databases, Queues, Monitoring tools and supports load balancing between
multiple node instance of Fn server as specified in Figure 2.15. Moreover, the Fn
framework supports multiple programming languages for developing functions and
can be deployed to container orchestrators which includes: Kubernetes and Docker
Swarm (Not officially support).

Fn deploy Details

1 2 3

Your code - —
l ! Fn Service &
myfunc — |1
MyFunc:0.0.2 Iiinodeapp/myfunc:0.0.2 ~ - MyFunc:0.0.2

MyFunc:0.0.2

2fn

Figure 2.14: Function Deployment in Fn [14]

330racle: https://www.oracle.com/index.html
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Figure 2.15: Fn Architecture [15]
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Chapter 3

Literature Review

This chapter will cover detailed review of related works which studied the evaluation
of Serverless functions and the factors that influence their performance. Although,
Serverless functions in literature gaining attention from IT practitioners and aca-
demics alike [107]. This chapter will address the evaluation of the Serverless functions
performance which are deployed on public cloud and on on-premise Infrastructure.
According to the literature analysis, the most common metrics used to verify the
performance of the Serverless functions are throughput and Response Time. The
first section will present the works related to the performance of the Serverless func-
tions that are deployed on public cloud infrastructure and the second section will
present the performance of the Serverless functions that are deployed on on-premise
Infrastructure using container orchestrators. This research will primarily focus on
deploying the Serverless functions on different container orchestrators; in order to
measure their impact on performance of Serverless functions. Table 3.1 represents
the summary for all related works addressed on this study.
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Table 3.1: Related Works Summary
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3.1 Serverless Computing on Public Cloud

The Serverless term is a new generation of PaaS offered by most of the cloud
providers. This new service was spearheaded by AWS Lambda ! and new services
such as Apache OpenWhisk 2, Google Cloud Functions ®, Azure Functions * and Iron
Functions ® have emerged as Serverless functions providers ¢ where software logic can
split into multiple functions and invoked in response to events [113].

G. McGrath and P. R. Brenner [113| studied Serverless functions performance
using latency and throughput as evaluation metrics. A Serveless functions prototype
was implemented in .NET where it contained the basic components needed to run
Serverless functions as it had web service, workers, data storage and message queues.
They conducted performance tests on their prototype and other cloud Serveless func-
tions providers AWS Lambda, Azure Functions and IBM Apache OpenWhisk. They
conducted an experiment by designing two experiments to compute the performance
of the prototype, and then compare its performance with other public Serverless
functions. They developed a performance analysis tool to collect the experiment
data that is related to the latency and throughput of Serverless functions. As part of
the experiment they used a framework called Serverless 7 to help deploying Node.js
8 functions to the different cloud Serveless functions providers and for the prototype
as well. They run concurrent tests in order to measure the number of responses
received per second and this was implemented by increasing the level of concurrency
gradually from 1 to 15 concurrent users. In general, their prototype demonstrated
better performance than other frameworks. They also conducted a backoff test in
order to measure the latency which mainly targeted the cold start time for Server-
less functions. The functions invocation were done during increasing intervals from
one to thirty minutes. The prototype latency performance was not bad but Google
Cloud Function and AWS Lambda had the best performance. Their study only used
one programming language Node.js when they conducted the experiment but using
other programming languages could affect the provided result and they only focused
on Windows containers. Moreover, they measured latency and throughput for single

LAWS Lambda: https://aws.amazon.com/lambda/

2Apache OpenWhisk: https://openwhisk.apache.org/

3Google Cloud Functions: https://cloud.google.com/functions/docs/

4Azure Functions: https://docs.microsoft.com/en-us/azure/azure-functions/

SIron Functions: https://www.iron.io/

6Serverless functions providers: The Serverless functions platforms provided by public cloud
"Serverless Framework: https://serverless.com/

8Node.js: https://nodejs.org/
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function execution.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara [101] investigated
the factors which influence microservice performance using Serverless functions in
order to give indication about Serverless computing infrastructure differences and
enable better software deployments. They studied the performance implications of
hosting related to infrastructure elasticity, load balancing, provisioning variation,
infrastructure retention, and memory reservation size. The research demonstrated
how microservice performance varies depending on four different states of Serverless
infrastructure which includes: provider cold, VM cold, container cold, and warm.
They used two Serveless functions providers AWS Lambda and Azure Function.

An experiment was setup in order to examine the Serveless functions perfor-
mance and infrastructure management by developing and deploying function to AWS
Lambda and Azure functions and they achieved that using multiple performance
tests under different load /stress levels . For Lambda functions, they developed CPU-
bound functions that performed random math calculations by defining multiple stress
levels for calculations functions. On the other hand, they developed HTTP-Triggered
functions using Azure Function written in C# °. For infrastructure elasticity they
were able to measure performance implications when leveraging elastic Serverless
computing infrastructure for microservice hosting by observing how response time
was impacted for COLD and WARM service requests. They noticed an extra in-
frastructure was created to compensate the initialization overhead of COLD service
requests which in turn affects any future incoming requests in WARM mode to not
use the extra infrastructure created in response to the COLD initialization. They
also observed good balanced distribution across hosts and containers of requests at
higher calculation stress levels for COLD and WARM service invocations and load
distribution was uneven balanced for low stress which causes not to utilize all nodes.
They studied the impact of provisioning variation that represents placement of con-
tainer across VMs on function performance and found out a performance degradation
of COLD service up to 4.6x times. Moreover, they studied infrastructure retention
to measure how infrastructure was retained and for how long. They identified all the
states that could affect their measurement by focus on these four states of Serverless
computing infrastructure: provider cold, VM cold, container cold, and warm. After
10 minutes they observed a deprecating in container followed by VMs that causes
a performance degradation reaching out 15x after 40 minutes of inactivity. Finally,
they studied how memory reservation size could impact the function performance

9C#: https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
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and observed that for COLD service execution time there was a performance in-
crease up to a 4x when increasing function’s memory size reservation from 128MB to
1536MB. However, the expected increase was up to 12x since memory was doubled
the performance also should be doubled. The increasing performance for WARM ser-
vice execution time was only a 1.55x improvement and memory reservation beyond
512MB was not helpful to improve WARM service performance. Their study only
focused on two public Serveless functions providers AWS and Azure and the result
cannot be applied to other providers. Moreover. the function computation imple-
mentation in Azure functions was not the same one used in AWS lambda. Finally,
they did not specify if they used the same programming language for both providers
as they only mentioned the function implemented in Azure.

D. Jackson and G. Clynch [95] focused on their study about how the different
programming languages/runtimes could affect performance and subsequent cost of
Serverless functions execution by presenting a design and implementation of a new
Serverless functions framework for testing to analyze the cost and performance met-
rics of commercial Serveless functions providers AWS Lambda and Azure Functions.
They conducted an experiment for both providers by implementing a completely
empty functions in order to abstract out any runtime language effects to measure
the impact of different programming languages/runtimes using COLD and WARM
start tests. On AWS Lambda, five languages/runtimes were selected Java 1) Node.js,
Python ', Go 12 and .NET Core 3. Python had the best performance during the
WARM start tests but the strange result was GO and Python had better perfor-
mance in COLD start than WARM start. On the other hand, Azure functions only
supports two runtimes Node.js and .NET Core and the last one had the best per-
formance in COLD and WARMS start tests. Using Node.js in AWS Lambda had
better performance in COLD start tests than Azure functions. However, .NET Core
had better performance than AWS Lambda for both COLD and WARM start tests.
They had an unexpected result when COLD start tests had better performance than
WARM start tests which requires further investigation. Moreover, the experiments
limited only for two Serverless functions providers.

FaaS causes a lot of container starts which requires a lot of cold starts for users.
J. Manner, M. Endrefs, T. Heckel, and G. Wirtz [103| studied cold start problem

10Java: https://www.java.com/

UPython: https://www.python.org/

12Go: https://golang.org/

13 NET Core: https://docs.microsoft.com/en-us/dotnet/core/
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in benchmark and investigated which factors could have impacts on the duration
of cold start. They selected AWS Lambda and Microsoft Azure Functions for their
benchmark and presented a set of hypotheses as basis for factors that could impact
cold starts for functions that included different factors from programming language,
platform, function memory size and size of the deployed package.

They conducted an experiment and only considered the following hypotheses:
programming Language, deployment package size and memory/cpu settings to be
investigated because these were easy to test and could provide stable and repro-
ducible results. They selected two programming languages Java and JS, as Java is
a compiled and JS an interpreted language and focused on compute bound opera-
tions by selecting a recursive fibonacci function to be deployed into two Serverless
functions providers AWS and Azure Functions. They configured the experiment set-
tings to force a cold start closely followed by a warm start on the same container.
However, the duration time required for container to startup was not provided by
the providers and they had to develop RESTful interactions with the providers that
measures start/end time in the client side. On the other hand, they developed a
prototype called SeMoDe [69] which created in order to help deploying functions on
different Serverless functions provider and automate tests generation. Based on the
experiment results, they observed that cold starts were much faster than consecutive
warm starts in JS functions deployed to AWS and the explanation because AWS only
charges users for functions execution without considering the setup time for virtual
machine and containers. They also noticed a gap between compiled and interpreted
languages for cold and warm executions using different memory setting where JS exe-
cution was much faster than Java. The overhead of cold starts decreased by memory
settings and only functions in AWS tested since memory setting cannot be configured
in Azure functions. Deployment package size did not give a clear indication if its
really impact the cold starts for the deployed functions. Their study evaluated two
Serverless functions providers AWS Lambda and Azure Function where container
setup and initialization for functions were unknown. The computation functions
only measured compute bound operations within two programming languages Java
and JS. All the benchmark tests were conducted sequentially and ignore concurrency
tests.

J. Manner and G. Wirt [83] presented another work about how application load
impacts the Serverless functions on number of running containers. They presented
simulation and benchmarking model for deployed Serverless functions which provided
useful information about performance and cost at an early stage for development
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team. The main goal for the research was to be able to conduct a simulation for
concurrent running containers for Serverless functions using different configuration
settings. They built a generic pipeline for FaaS Benchmarking in order to evaluate
the number of concurrent running containers applied against single Serverless func-
tion. They considered settings from their previous research [103]| such as memory
setting and deployment size alongside with load patterns because of their impact on
the execution time which helps in assessment for how much concurrent containers
were running. The simulation part of the pipeline helps developers to simulate the
number of concurrent running containers by adjusting different settings related to
memory size and overall execution time that can help them which settings required
for better performance and cost. The second part of the pipeline helps in deploying
cloud functions by generating workload using different load patterns and the result
from invoking these functions will be analyzed and compared against results from
the simulation part. Based on the simulation results they concluded that the num-
ber of concurrent running containers was impacted using different workloads. Their
research used combined pipeline for both simulation and benchmarking but they did
not provide and compared results between the simulation part and the results when
deploying the Serverless functions using their proptype to see how they are close to
each other.

Cloud computing provides multiple paradigms for hosting and deploying soft-
ware, where performance is a critical factor for software under different workloads.
C. Volker, [109] studied the suitability of Serverless functions by measuring the dif-
ferences between software deployed to IaaS and on Serverless functions providers
with respect to cost, performance and response time. The goal was to identify the
suitable use cases for Serverless functions approaches. A case study was conducted
which aimed to compare for software deployed to IaaS and on Serverless functions
approaches by using the same cloud provider AWS. The same test software was built
using two programming languages, one of them used Java Spring framework and de-
ployed to AWS EC2 which requires developer to apply all settings required for scaling
the software. However, Node.js software was deployed as a Serverless function using
AWS Lambda. As a result of his case study using the test software, he concluded
that the overall response time for software deployed to EC2 performed better than
Serverless functions and the scalability of Serverless was better than EC2. The case
study was limited to only one cloud provider AWS and the impact of programming
languages was not taken into consideration when the test software was developed
using two different programming languages. Moreover, deploying the load test in-
stance was outside the AWS network which could increased the latency and affects
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the response time for both cases.

H. Lee, K. Satyam, and G. Fox [100] evaluated parallel invocations on Server-
less functions under dynamic workloads to measure throughput and performance
of Serverless functions. They measured how the performance for CPU, memory
and disk intensive tasks differs between sequential and parallel running functions.
Moreover, they did a comparison of costs and computation time between Server-
less functions and virtual machines. They conducted a set of experiments on four
Serverless functions providers Amazon Lambda, Microsoft Azure Functions, Google
Functions and IBM OpenWhisk using 4 different programming languages NodelJS,
Java, C#, and Python. The purpose was to evaluate Serverless functions and they
started that by evaluating the throughput of running functions by thousands of in-
vocations using different triggers (HTTP, Database) on multiple Serverless functions
providers. Moreover, they measured how intensive workloads on CPU, Memory, I/O
and networks could affect the execution time for sequential and parallel invocations
by deploying a test function to all targets providers. On the other hand, they in-
vestigated the elasticity of Serverless functions on multiple providers by running a
simple test function to check how the overall execution time for invoked function get
impacted under heavy concurrent requests. The research only focused on through-
put and response time in general and did not consider warm & cold start time for
Serverless since this is a very important when studying Serverless. Moreover, the
results they shared was not reproducible for the whole tests they did and the usage
of the different runtime was not clear enough in all tests.

T. Back and V. Andrikopoulos, [89] evaluated the performance and cost model for
the most popular Serverless functions providers AWS Lambda, Google Cloud Func-
tion, Azure Functions and IBM Apache Whisk. They conducted a set of tests by
developing a microbenchmark called faas-pgbenchmark * which helped to deploy all
functions to the selected providers using different memory settings. To evaluate the
performance of different Serverless functions providers they used 3 functions: Fast
Fourier Transformation (FFT), Matrix Multiplication (MM) and Sleep function (S).
Each function was evaluated using different parameters with different memory set-
tings starting from 128 MB to 2048MB. All the implemented functions were developed
using NodeJs runtime. Generally, the results of all tests showed that performance
was enhanced for increasing memory settings of all the deployed functions. However,
the research covered all the tests under one runtime environment based on NodeJs
and the performance evaluations was limited to the duration time and did not con-

Hfaas-ubenchmark: https://github.com/timonback/faas-mubenchmark
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sider other factors such as throughput or latency. Moreover, all the computations
were only related to memory/CPU and did not apply any test for I/O or network
tasks. Moreover, All the conducted tests did not cover concurrent requests.

Similarly, K. Figiela, A.Gajek, A.Zima, B.Obrok and M.Malawski [102] evaluated
the performance of Serverless functions on different providers AWS Lambda, Google
Cloud Function, Azure Functions and IBM Apache Whisk. The heterogeneity of
Serverless functions was taking into consideration for this research. They used an
evaluation benchmarking framework which helped to deploy CPU-intensive functions
based on Mersenne Twister and Linpack by using different memory settings on each
Serverless functions provider. Their research considered to be unique among previ-
ous works conducted a benchmarking on Serverless functions since they addressed
a major issue related to heterogeneity of runtime environments on Serverless func-
tion providers by building a native binary written in C wrapped by the deployed
function written in NodeJS. The result of the research illustrated the heterogene-
ity between Serverless function providers, especially for how they are handling the
resource allocation policies. They also found a relationship between the Serverless
function size (allocated memory) and performance. All the conducted tests evalu-
ated only the execution time as performance metric for the deployed functions using
different memory settings but did not consider cold time delays for the Serverless
functions and all the deployed functions were CPU bound operation only. Moreover,
the research did not mention anything related to concurrent invocation to measure
its impact on the Serverless function performance.

3.2 Serverless Computing on On-Premise Infrastruc-
ture

R. Pellegrini, 1. Ivkic, and M. Tauber [87] evaluated the performance of Serverless
functions by presenting an architectural model acted as a benchmark tool for Server-
less functions. It aimed to give an insight about Serverless environments and identify
the factors which may impact the performance of Serverless functions. They built
a Serverless functions benchmark framework in order to help evaluation the perfor-
mance of Serverless functions where generation of the workloads invoked from Java
client based called FaaSBench. Another component part of the framework was Proxy
Cloud Function (PCF) where its responsible for collecting metrics about the Target
Cloud Function (TCF) and the Serverless functions provider. The final one was the
Target Cloud Function (TCF) which contains the function logic. They conducted
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tests using the benchmark tool where OpenFaas Serverless framework was selected
for the tests on top of VM with normal specification to evaluate the performance of
a simple cloud function (TCF) that counts letters. The header size and transmission
time between TCF & PCF in both directions were the only metrics measured dur-
ing the experiments. The Serverless functions benchmark framework they built for
the study was good but they only studied the header size and transmission time to
evaluate performance which were insufficient. They did not mention if the workload
generated for the tests was sequential or parallel and the implemented function for
the TCF was very simple that counts the number of letters. Moreover, only one
runtime used NodeJs for PCF and nothing was clear about TCF runtime. They did
not take into consideration the network latency between workload generator (FaaS-
Bench) and Proxy Cloud Function (PCF) which could affect the result of the tests.
All the tests were limited only to one Serverless function framework OpenFaas where
they did not mention much information about it.

S. K. Mohanty, G. Premsankar, and M. D. Francesco [105] evaluated the per-
formance of 3 open source Serverless frameworks '® Fission ¢, Kubeless !” and
OpenFaaS '® by measuring the response time, ratio of successful responses under
different workloads and studied the impacts of auto scaling on performance. They
also provided detailed features comparison between the selected frameworks. They
conducted an experiment where all the tests for the selected Serverless functions
frameworks were deployed to Kubernetes ' orchestrator. First, they disabled the
auto scaling feature in all frameworks and apply the tests in fixed replicas (1, 25,
50) subsequently by deploying a simple function written in Go language. They also
did the same tests with auto scaling enabled in all frameworks. They found that
Kubeless has the most convenient performance in all different test cases. Their work
is considered the first evaluation for open source Serverless functions frameworks
using Kubernetes orchestrator. However, they only covered Kubernetes container
orchestrator and all functions written for test cases were implemented using one pro-
gramming language Go which could generate different result if other languages were
selected. They did not take cold time into consideration when they conducted the
test cases.

15Gerverless functions frameworks: Refers to the Serverless functions framework run in any in-
frastructure

6Fission: https://fission.io/

I"Kubeless: https://kubeless.io/

180penFass: https://www.openfaas.com/

19Kubernetes: https://kubernetes.io/
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A. Palade, A. Kazmi, and S. Clarke [86] evaluated the performance of Serverless
functions on edge computing environment where 4 open source Serverless functions
frameworks were selected Knative 2, Kubeless, Apache OpenWhisk and OpenFaaS.
Response time, throughput and success rate of the deployed functions were evaluated
under different workloads. They conducted a set of tests on edge computing envi-
ronment which contained two main layers the IoT Devices Layer where Raspberry
PI 2! devices were used as IoT devices and the Edge Computing Layer where all
Serverless functions deployed using Kubernetes orchestrator cluster on top of bare
metal machines. The generation of the requests initiated by JMeter 22 by differ-
ent levels of concurrency and the results showed that Apache OpenWhisk had the
worst performance among the selected frameworks for all the metrics and Kubless
can scale better than other frameworks. Their work was considered the first one
which evaluated open source Serverless functions frameworks in the field of the edge
computing environment. However, all the test cases were conducted using simple
function written in NodeJs and did not consider operations like CPU, Memory, I/O
or network which requires further investigations. Moreover, the selected Serverless
functions frameworks were deployed using only Kubernetes orchestrator and using
other orchestrators (Docker Swarm) could have different results. The results of the
research cannot be reproducible.

K. Kritikos and P. Skrzypek [99] evaluated seven open source Serverless frame-
works by providing a feature comparison analysis based on predefined criteria related
to the software lifecycle. The selection of Serverless frameworks was based on abstrac-
tion frameworks where complexity of multiple Serverless frameworks is abstracted
away from developers. Moreover, provisioning frameworks were considered where
they can be operated as standalone Serverless frameworks which can be deployed on
top of container orchestrator (Kubernetes) over existing cloud infrastructures. They
studied Serverless frameworks using feature comparison analysis related to software
lifecycle. Selecting the best performer candidate between the Serverless frameworks
using feature comparison was not enough since they did not do real comparison re-
lated to how each framework behaves under different workloads to measure their
performance.

20Knative: https://knative.dev/
21Raspberry PI: https://www.raspberrypi.org/
22 JMeter: https://jmeter.apache.org
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S. Shillaker and P. R. Pietzuch [108] presented at the beginning of their research
a plan to build a new multi-tenant Serverless language runtime in order to reduce
overhead and obstructing of resource sharing produced by Serverless functions when
using in its own Docker ?® container. They claimed that the new approach will reduce
latency, improve resource efficiency and provides a smart approach for scheduling.
In order to prove the existence of these limitations, they conducted an experiment
to study the performance of Openwhisk framework. All the tests were conducted in
functions written in Java under moderate to high workloads where they focused on
equivalent throughput across different system metrics which includes latency, CPU
cycles and Memory using different numbers of function to study the performance
of Openwhisk. Moreover, they also studied the behaviour of Openwhisk when the
rate of submitted requests bypass the container limit for handling requests where
response rate decreased. They explained the results because of how Openwhisk han-
dle scheduling and the isolation imposed by containers. The investigation they did
was limited only to one Serverless framework Openwhisk and did not consider other
frameworks which could generate different results. All the functions were deployed
as standalone containers without using any help from container orchestrator. On the
other hand, they did not mention the type of operations executed by the deployed
functions and all functions implemented using Java programming language which
depends on JVM.

3.3 Discussion and Conclusion

In the previous sections, we presented all works that studied performance of Serverless
functions deployed using public cloud providers and other open source frameworks
deployed to on-premise infrastructure. There were plenty of related work that evalu-
ated the performance of Serverless functions on public cloud using different Serverless
functions providers like AWS Lambda, Azure Functions, Google Functions and IBM
OpenWhisk. Some of them only evaluated the performance of Serverless functions us-
ing limited cloud providers while others did the evaluation in all available providers.
Most of the works conducted all the tests using one programming language /runtime
while few of them using multiple languages/runtimes supported by the current cloud
service providers. On the other hand, most of the work used common metrics for
performance evaluation by conducting their experiments depending on throughput
and response time and some few works considered other metrics like latency. All the
computations were only related to Memory, CPU for most of the works but none

23Docker: https://www.docker.com/
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of them handle all computations types which includes I/O and networks alongside
Memory and CPU. Every public Serverless functions provider has its own imple-
mentation, scaling policy, scheduling and cost models for handling requests which
helps to abstract a lot of headache for users like how each function is executed inside
the provider infrastructure. Usually each function in public providers run inside a
container which requires a lot of cold starts for users. Few of the above works in
public providers studied the impact of cold and warm starts to the performance. The
majority of the work evaluated the performance of Serverless function using concur-
rent requests and some other works consider both concurrent and sequential requests
while few of them did not mention the type of loads being generated. Some of works
presented a detailed information on how to reproduce the results of the experiments
they conducted using benchmark tools they developed for that purpose while others
did not mention anything about that.

The number of works that evaluated the performance of the open source Server-
less frameworks deployed to on premise infrastructure were limited. Most of the
works used the same performance criteria response time, throughput and others
used success rate. Moreover, some of them deployed their functions using container
orchestrator like Kubernetes since most of the open source frameworks can be run
as Docker container which can get extra credits for load balancing, networking and
container management features for free [108]. However, none of the related works
studied if different container orchestrators could impact the performance of deployed
Serverless functions. On the other hand, None of them used multiple programming
languages/runtimes when they conducted the experiments which could impact the
results. The implementation of Serverless functions of all previous works on on-
premise infrastructure contained simple logic and did not handle complex operations
related to Memory, CPU, I/O or networks. The cold and warm starts are an impor-
tant factors that was not considered in previous works either. Moreover, none of the
related works that studied performance of Serverless using open source frameworks
provided full details about reproducing the results so that we can re-use or validate
them in our research.

Serverless functions can be run as standalone Docker containers which opens the
door for researchers to study Serverless functions using container orchestrators like
Kubernetes to help in load balancing, routing and container lifecycle management.
Investigating if different container orchestrators can impact the Serverless function
performance is an interesting research topic this thesis tries to address. Kubernetes,
Docker Swarm and Nomad are examples of container orchestrators can be used to
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measure Serverless functions performance by focusing on throughput, Response time
and Success Rate under different function computations Memory/CPU, I/O and
networks. Moreover, multiple functions will be deployed using different programming
languages,/ runtimes NodelJs, Python, Go and Java with concurrent and sequential
requests. The impact of cold and warm start time will be considered as part of this
research. More details are going to be explained in methodology chapter.
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Chapter 4

Research Methodology

The main goal of this chapter is to provide a clear understanding about the research
methodology used to evaluate the performance of the Serverless framework deployed
on top of different container orchestrators and provides details about data collection,
analysis, design and setup of of the research method. A. Palade, A. Kazmi, and S.
Clarke [86], S. K. Mohanty, G. Premsankar, and M. D. Francesco [105] evaluated
performance of different open source Serverless frameworks on top of Kubernetes
orchestrator in terms of response time, throughout and success which is the same
approach we followed in this study by using the same metrics. In order to inves-
tigate the impact of different container orchestrators on Serverless, we conducted
an experiment to check how the performance will be affected under different con-
tainer orchestrators for deployed Serverless functions. Section 4.1 provides details
about the methodology used for performance evaluation. Section 4.2 provides de-
tails about data collection. Section 4.3 discusses the data analysis. Section 4.4
illustrates the evaluation for Serverless frameworks that we did for 9 frameworks.
Section 4.5 discusses the performance metrics and factors for Serverless functions.
Section 4.6 provides insights about the required procedures for performance evalua-
tion of Serverless functions. Section 4.7 discusses the architecture used to evaluate
the performance. Finally, Section 4.8 provides details about experiment design and
full details about experiment tool

4.1 Research Approach

In this thesis, a quantitative research approach was selected to evaluate the Server-
less performance on top of different container orchestrators. Experiment was the
best approach to choose as it provided statistical data to find a relationship between
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variables (independent and dependent) to test our hypotheses. Our research was ex-
tremely fit with experiment approach since it investigated the relationship between
deployed Serverless functions and container orchestrators in terms of performance
using different settings and controllable environment. Moreover, the investigation
focuses on performance metrics particularly response time, throughout and success
rate and these are continuous measurement. We build an experiment with a system-
atic steps that help in replicating and reproducing the results easily depending on
custom experiment tool built for this purpose.

4.2 Data Collection

As prerequisite of the experiment, an evaluation of Serverless frameworks which
supports running on different container orchestrators was conducted as illustrated in
section 4.4 to choose the suitable framework for this research since the base Serverelss
framework (OpenFaaS) to work with was the initial step to move forward to start
our investigation. Collecting the data of submitted requests was required to simulate
generation of http requests with different settings in order to cover all the test cases
that measure the performance metrics where OpenFaaS was deployed to the selected
container orchestrators Kubernetes, Docker Swarm and Nomad. As the number of
generated test cases are quite large, handling them manually even with using one of
the load testing tool required a lot of effort and time and here it came the idea of
building an automation tool to deal with that where faas-exp ! was developed for
that purpose. faas-exp was the entry point of generating the http requests and gather
all the raw data to be used later on for analysis where more details is illustrated at
Section 4.8.6.

4.3 Data Analysis

As we discussed previously, we are interested in studying the performance of Server-
less using different container orchestrators based on the selected metrics defined. The
faas-exp played a crucial role on conducting the experiment where it focused on gen-
eration test cases, aggregating raw data, analysing them and generating visualizing
figures. Median is used to do the comparison between the three container orches-
trators for all defined test cases based on the performance metrics selected for the
experiment. The reason for selecting the Median was to avoid the outliers values that

faas-exp: https://github.com/mabuaisha/faas-exp
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could affect the generated results and in order to accurately reflect the typical value
specially for response time, throughput as contained some outliers values. Moreover,
IQR (Interquartile range) was also used in order to detect the outliers values and
remove them before aggregate the results. On the other hand, we introduced quite
amount of factors in this research to study the impact the of container orchestrators
on the Serverless function performance and to make sure that all the results we ob-
tained from this research not explainable by chance we applied a statistical analysis
using Wilcoxon paired tests in order to validate that all the results are statistically
significance by testing the p-value.

4.4 Serverless Frameworks Evaluation

In this section, most of Serverless frameworks that can be run as container and de-
ployed to orchestrators are evaluated following the same approach did before by [86]
[105] [104] but with focus more on frameworks that support orchestrators such as
Kubernetes, Nomad, Docker Swarm and Mesos. The evaluation contains new frame-
works never evaluated before like Fn, Nuclio and Kyama. It will help to select the
most relevant Serverless framework with multiple orchestrators support to conduct
this research. This research evaluated 9 Serverless frameworks where frameworks
illustrated in Table 4.1 support single container orchestrators and frameworks illus-
trated Table in 4.2 support multiple container orchestrators. As our research focuses
to study these type of Serverelss frameworks, its important to have free access and
full control to the framework without any limitations. It is also essential for the
Serverless framework to support container orchestrators because the main goal of
the research is to investigate performance of Serverless functions deployed to differ-
ent container orchestrators. Moreover, In order to answer our research questions it is
required for Serverless frameworks to support multiple programming languages and
to be invoked using HTTP event source. Logging and monitoring all requests against
Serverelss frameworks are important to capture important metrics for analysing pur-
poses. The ability to scale functions based on demand is also impacts performance
which usually should be supported by the framework. Support of CLI allows easy de-
ployment and invocation of functions when conducting load testing. The evaluation
features selected for Serverless frameworks are specified as the following:

1. Open source license. All the selected frameworks are open source which
give developers the freedom to access and use them without restrictions on any
infrastructure and avoid vendor lock-in.
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2. Programming Languages Support. Multiple programming languages sup-
port is essential for Serverless framework which give developers the flexibility
to use their own language. Moreover, since Serverless framework can be run
as container it should be easy to build and develop any function using any
programming languages by building custom docker image.

3. Container Orchestration Support. Most of the Serverless frameworks sup-
port running using container orchestrators which helps in deployment, opera-
tion and scaling function if necessary.

4. Function Triggers. Functions invocations support various sources and can be
synchronous invocation (HTTP), Scheduler invocation (cron) or asynchronous
event invocation (message queue).

5. Monitoring Support. The ability to measure the performance of Servelress
functions is crucial and the selected framework should have the ability to be

integrated and configured easily with other monitoring tools (Prometheus 2,
Grafana ?).

6. Auto Scaling. Serving requests based on demand is important and the frame-
work should have the support to scale in/out to satisfy user needs.

7. CLI Support. Interaction with Serverless functions using command line in-
terface is important for configuration and management. It also helps deploying
and invoking function and integrate framework easily with third party tools.

8. Github Community. Github # Developer community is an important factor
for evaluation open source software to check the software maturity, stability,
development community and how much Serverless framework is popular.

All the 4 Serverless frameworks presented in Table 4.2 support multiple container
orchestrators. In order to select the best candidate to use for our research, we tried
to install and configure each framework in a testing environment by following their
documentation website and deploy simple hello world function in top of different con-
tainer orchestrators. We found that OpenFaaS framework has clear documentation
and steps for deployment functions to different container orchestrators: Kubernetes,
Docker Swarm and Nomad and also it supports other container orchestrators that

2Prometheus: https://prometheus.io/
3Grafana: https://grafana.com/
4Github: https://github.com/
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Table 4.2: Serverless Frameworks Reviews with Multiple container orchestrators
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can be deployed to. Moreover, it is more popular than others and easy to use and
integrate with. Aforementioned, The OpenFaaS is going to be used as a reference
framework in this research using multiple container orchestrators to find if container
orchestrator can affect the performance of deployed Serverless functions.

4.5 Performance Metrics and Factors

This research focuses on measuring how the performance of deployed Serverless func-
tions under different container orchestrators can be varied using different set of fac-
tors. Performance is a crucial aspect for Serverless functions when it comes to serve
user requests for high workloads. The ability of Serverless framework to scale in/out
based on different workloads helps to reduce overheads on deployed software, min-
imize response time and maximize throughout. This will be helpful especially for
Microservice architecture where hundreds of functions deployed to handle incoming
traffics. The following subsections focus on the following:

1. Performance Metrics: The performance metrics which are going to be stud-
ied in this research are response time, throughput and success rate.

2. Performance Factors: There are some factors that can impact the perfor-
mance of Serverless which includes: computation types: Memory, CPU, 1/0O
and networks bound operations, using different programming languages, con-
current and sequential requests and impact of cold and warm start time.

4.5.1 Performance Metrics

Serverless is highly tied with Microservice architecture where the whole software
can be split into multiple functions and each function responsible for separate func-
tionality. Serverless function can be packaged and deployed as container on top of
container orchestrator which is essential to measure and evaluate its performance
using different metrics and since there are some Serverless framework such as Open-
FaaS supports running under different container orchestrators then the performance
of deployed functions can be varied from container orchestrator to another. This
research measure the performance of Serverless functions deployed under different
container orchestrators as the following:

1. Response Time: The total time required to complete user requests from the
moment of request generation until the response is received where it measures
the performance of an individual request.
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. Throughput: The number of completed requests per second where it measures
the overall performance of the system.

. Success Rate: The ratio of successful requests to the total number of gener-
ated requests.

4.5.2 Performance Factors

The performance of Serverless function varies based on different settings and cir-
cumstances. In this research, the base Serverless framework selected is OpenFaaS
which supports running using different container orchestrators and there are some
settings/factors that need to be studied when deploy Serverless functions on these
container orchestrators. This research focuses on the following criteria to measure
the impact of container orchestrators on deployed Serverless function based on the
performance metrics define before:

1. Operation Type: Function can be implemented for executing different type

of operations that can be related to CPU/Memory-bound operation (matrix
multiplications), I/O-bound operation (Write files) or Network-bound opera-
tion (Download files)

. Programming Languages/Runtimes: OpenFaaS supports wide range of
programming languages which allows to deploy functions using different lan-
guages where the main selected languages /runtimes for this research are Python,
Java, Go and NodelJS.

. Generated Workload: The generated workloads that trigger functions can
be sequential or parallel. These two types are going to be considered in this
research.

4. Warm and Cold Start Times: These two factors have an impact on re-

sponse time/throughput of functions when invoke them during the warm time
(container ready to accept requests) and on cold start (function not ready yet
and need to be initialized).
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4.6 Performance Evaluation Procedures of Deployed
Serverless Functions

In order to evaluate the performance of Serverless function deployed on different
container orchestrators, it is required to have infrastructure to use for installing,
configuring container orchestrator, deploying Serverless function and performance
testing. All these steps can help to reproduce results and conduct performance eval-
uation easily. The goal is to design an evaluation flow focuses mainly on two parts.
First, to provision infrastructure, configuring and installing container orchestrator
and deploy Serverless functions. Secondly, prepare a performance evaluation by run-
ning load tests to measure the desired metrics of this research and analyse the results.
The evaluation flow starts with the following steps:

1. Cloud Infrastructure Provisioning: Infrastructure refers to the hosting en-
vironment which supports the computing requirements resources to run func-
tions and provisioning resources and can be automated using RESTful APIs.

2. Application Layer Configuration: Once the infrastructure is ready, differ-
ent orchestrators can be easily installed and configured on top of the provi-
sioned infrastructure. Moreover, OpenFaaS will also be ready to be installed
and configured.

3. Function Deployment: Deploy function to target environment (container
orchestrator).

4. Performance Testing: This part will help to automate generation of requests
under different settings.

5. Data Analysis: Analyze all the generated results that help to draw a conclu-
sion to explain the relationship between container orchestrators and Serverless
function.

4.7 FEvaluation Architecture

Previously, we presented a general overview about the evaluation steps used in this
research as a baseline of our investigation. This section will provide more details
about the evaluation architecture which includes the internal components of each
phase and how they interact with each other. Figure 4.1 presents detailed overview
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about the evaluation architecture where two main layers are taking into considera-
tion: Infrastructure and application layer which are explained in details in the next
two subsections. Moreover, Figure 4.2 presents the deployment diagram of all com-
ponents.

Cloud Environment
Infrastructure Layer

File Storage Node Load Balancer Node Invoker Node Cluster Nodes
L3 L L3
i * ! i
Installed In Instailed In Installed In Insta?led In
Container Orchestrator
FTP
HTTP. Load Testing
A Tool ‘ Leader Worker2 ‘ Worker1
A, T
% b
G);, HTP Deployed In
6”&, |
e OpenFaa$ Serverless
OpenFaa$S Framework Function A
Application Layer Watchdog

API . Http:8080 —»Docker image
aas- | |

scrap@v Gateway vﬁle up id
provider

Alert Function B

Monitoring Manager w;:gggg —>/Docker image

Figure 4.1: Evaluation Architecture

4.7.1 Infrastructure Layer

This layer is an essential part of our architecture where it contains four type of
nodes: Cluster, Invoker, Load Balancer and File Server. Node refers to virtual
machine responsible for hosting software, functions. All these nodes are provisioned
in using AWS cloud infrastructure where nodes can be easily created and destroyed
using API enabled by the cloud infrastructure.

1. Cluster Nodes: Core nodes where contain all the required software and ap-
plications to run Serverless functions in top of container orchestrators. The
cluster nodes will contain container orchestrator, OpenFaaS Serverless frame-
work and functions. The size of the cluster for each container orchestrators:
Kubernetes, Docker Swarm and Nomad is going to be 3 nodes share the same
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Figure 4.2: Evaluation Deployment Architecture
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specification: CPU/Cores, RAM and Volume (Storage) which is going to be
explained in Environment Setup Section.

2. Invoker Node: This node used for management and generating load testing
on the cluster nodes and it resides on the same network of Cluster nodes and
File Server to mitigate the network latency. The baseline for all tests will be
triggered from this node which contains CLI of OpenFaaS to deploy function
in Cluster nodes.

3. File Storage Node: This node represents a storage layer of all files requested
from the Serverelss function deployed to container orchestrator. As we are
going to measure the Network-bound operation in this research, this node is
essential to measure this aspect. This node is reside on the same network of
other nodes in order to mitigate the network latency from transferring files.

4. Load Balancer Node: This node contains the proxy server that act as mid-
dleware for handling requests/responses between client and backend servers
(cluster workers).

4.7.2 Application Layer

This layer represents two parts. Firstly, the execution environment which is container
orchestrator where all functions are deployed and running to serve user requests.
Secondly the utility environment which represents the faas-exp tool installed inside
invoker node and FTP server which serve files requested by Serverless functions.

1. Container Orchestrator Cluster: This represents the execution environ-
ment of OpenFaaS Serverless framework and all deployed functions. Configur-
ing container orchestrator cluster starts with primary node which responsible
for management, scheduling and leading the whole cluster. The primary node
has name based on the type of container orchestrator where it is called Master
node in Kubernetes, Manager in Docker Swarm and Server in Nomad. More-
over, The secondary node is called worker where it runs the actual workloads
and sync with the primary node. Most of the container orchestrator share the
same term "Worker" except Nomad "Client". In Figure 4.1 we agree to call the
primary node as "Leader" for simplicity and the rest of the node as "Worker".
As mentioned before, the size of our cluster is 3 node, 1 leader node and 2
workers.
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2. OpenFaaS Framework: The OpenFaaS framework itself will be deployed
in top of container orchestrator. All its components including: API Gateway,
Alert Manager and Prometheus will be deployed as containers. OpenFaaS
communicates with container orchestrator using a faas-provider for managing
Serverless functions inside the cluster.

3. Load Testing: The simulation of http requests will be handled and generated
using faas-exp tool which is installed on the invoker node. It will communicate
with functions deployed in container orchestrator to measure the performance
metrics specified before.

4. FTP Server: This represents the File Server which is installed inside the File
Storage Node in order to serve all files transferred from the Serverelss functions
using FTP protocol.

5. Proxy Server: This node represents the entry point for all requests generated
by the load testing tool where it balances the requests among the cluster work-
ers using round robin algorithm where it serve responses to clients on behave
of backend servers (cluster workers).

4.8 Experiment Design

The goal of this experiment is to investigate and find a relationship between the
deployed Serverless function and the container orchestrator in terms of performance
under different circumstances. In order to accomplish that and before start running
the experiment, we need to define the context and boundaries of the experiment
which includes the set of Hypotheses need to be investigated, performance metrics
need to be measured, specifying dependent and independent variables, the flow of
the experiment which covers all the scenarios and finally the environment where the
experiment will take place.

4.8.1 Experiment Hypotheses

In order to be able to answer the research questions, the following alternative hy-
potheses are defined to help answering them:

1. Hy: There is a relationship between response time of deployed Serverless func-
tion and container orchestrators.
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10.

11.

12.

13.

14.

Hy: There is a relationship between throughput of deployed Serverless function
and container orchestrators.

Hj: There is a relationship between response success rate of deployed Serverless
function and container orchestrators.

Hy: There is a relationship between generated workload requests (sequential /-
parallel) against the response time of Serverless function and container orches-
trators.

Hjs: There is a relationship between generated workload requests (sequential /-
parallel) against the throughput of Serverless function and container orches-
trators.

. Hg: There is a relationship between generated workload requests (sequential /-

parallel) against the success rate of Serverless function and container orches-
trators.

H7: Using different operation types of the Serverless function will affect the
response time of function deployed to different container orchestrators.

Hg: Using different operation types of the Serverless function will affect the
throughput of function deployed to different container orchestrators.

Hy: Using different operation types of the Serverless function will affect the
success rate of function deployed to different container orchestrators.

Hyy: Using different programming languages/runtimes will affect the response
time of function deployed to different container orchestrators.

Hi1: Using different programming languages/runtimes will affect the through-
put of function deployed to different container orchestrators.

His: Using different programming languages/runtimes will affect the success
rate of function deployed to different container orchestrators.

Hi3: There is a relationship between cold/warm Start times of the Serverless
function response time and container orchestrators.

Hi4: There is a relationship between cold/warm Start times of the Serverless
function throughput and container orchestrators.

On the other hand, the Null hypotheses Hj of the defined metrics are to reject
the relationship between the defined factors and the container orchestrators.
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4.8.2 Experiment Metrics

Performance is what going to be investigated in this experiment which mainly focuses
on the metrics we illustrated previously in details which are response time, through-
out and success rate. These metrics will be measured when deploy OpenFaaS to the
predefined container orchestrators.

4.8.3 Experiment Variables

Conducting experiments help to establish relationships between cause and effect.
Cause and effect provide explanation, answer why things happen and help in predi-
cation what will happen when apply something. Experiment is designed to measure
if something changes will cause something else to change in repeatable fashion. Ex-
periment variables are the things which are changing where they represent factors
or conditions. An experiment has three types of variables: independent, dependent,
and controlled. For this experiment which focuses on measuring the performance
of Serverless function deployed to different container orchestrators, we are going to
specify all variable types related to our research.

4.8.3.1 Independent Variables

Independent variables refers to variables which can change during the experiment.
The following variables represent the independent variables used in this experiment
which play an important role in Serverless function performance.

1. Container Orchestrator

2. Operation Type

3. Programming Language/Runtime.
4. Workload Requests Type

5. Warm/Cold Start Time

4.8.3.2 Dependent Variables

Dependent variable refers the what is being measured and sometimes called out-
put /response. The main goal of the experiment is to measure the performance of the
Serverless deployed to different container orchestrators and the following variables
represent what we need to study.
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1. Response Time
2. Throughout

3. Success Rate

4.8.3.3 Controlled Variables

a variable that is kept constant during the experiment. The following variables
represent the settings/variables that should be constant during the whole experiment.

1. Specification and Number of the Infrastructure Nodes: Everything re-
lated to cloud environment, Operating system, VM node types and the number
of nodes should be constant during the experiment.

2. Function Invocation: All functions invocation should be triggered from the

same network where all Serverless functions deploy to.

4.8.4 Experiment Flow and Scenario

In order to answer the research questions of this thesis, we are going to apply set of
scenarios by deploying OpenFaaS Serverless to the selected container orchestrators:
Kubernetes, Docker Swarm and Nomad. The base scenarios are divided into four
main categories as the following:

1. Computational Scenarios

2. Programming Languages/Runtimes Scenarios
3. Chaining Serverless Functions Scenarios.

4. Warm and Cold Start Scenarios.

There are a set of settings that can be applied and shared between the above
scenarios specified as the following:

1. Sequential Requests: Requests are generated and sent by faas-exp tool se-
quentially to the deployed functions.

2. Parallel Requests: Requests are generated and sent by faas-exp tool in paral-
lel using different concurrency levels(5, 10 15, 20, 50) where Serverless function
can accept multiple requests at the same time.
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3. Enabled AutoScaling: AuotScaling can be enabled by OpenFaaS Server-
less framework where framework itself can increase the number of replicated
function when workloads increases

4. Disabled AutoScaling: AuotScaling can be disabled by OpenFaaS Server-
less framework where the number of function replicas is set manually (1, 10,
20) to be consistent with number of concurrency levels set before in order to
investigate the performance under predefined replicas without enabling auto
scaling provided by OpenFaaS.

The following combinations of the above settings can be used together:

1. Sequential Requests and Disabled AutoScaling: Autoscaling does not
matter here since the number of requests sent is sequential.

2. Parallel Requests and Enabled AutoScaling
3. Parallel Requests and Disabled AutoScaling

Running the experiment for all scenarios multiple times is very important to make
sure that the generated results are valid, eliminate any source of randomness and
to improve the accuracy of the collected results. Some previous works did multiple
experiment runs varied from 5 - 10 runs like what S. K. Mohanty, G. Premsankar,
and M. D. Francesco [105] did on their work for evaluation open source Serverless
frameworks. The number of iterations for the experiment study set to 6 runs and it
came after conducting some tests and observed that the results were not changing
so much after iteration number 6 so that in order to save time and resources, the
selected number of iteration was set to 6. Similarly, the total number of submitted
request was set to 35000 for each run which is something nearly similar to what
others used before.

4.8.4.1 Computational Scenarios

Operation type is considered in this experiment where the following type of opera-
tions are going to be implemented using NodeJS programming runtime and deployed
to the selected container orchestrators as the following:

1. I/O Operation: Function performs write operation to file.

2. CPU/Memory Operation: Function performs matrix multiplication
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3. Network Operation: Function performs file download from the FTP server
prepared for this experiment

All of the above scenarios are going to be used with the combinations defined
before.

4.8.4.2 Programming Languages/Runtimes Scenarios

Different programming languages runtimes are going to be used using simple function
logic where Python, Java, GO and NodeJS are selected. Each language /runtime will
be associated with the above combinations settings.

4.8.4.3 Chaining Serverless Functions Scenario

Software applications that use Serverless contain multiple functions that interact
with each other and that the reason for adding this scenario where two Serverless
functions communicate with each other using RESTful requests. These two functions
can be donated as S & D where S represents the source function (caller) and D is the
destination function (callee). Both functions written in NodeJS where the destination
is a matrix multiplication function and the source function invokes destination. All
previous combinations are applied to this scenario.

4.8.4.4 Warm and Cold Start Scenarios

Warm start refers when the function/container is ready to serve requests generated
by users as it reuse the available container. However, Cold start refers when no
available function/container ready to serve requests which requires an extra container
initialization and overhead. The previous combinations are going to be used for
Warm and Cold start. One programming language is going to be used which is
NodeJS for Warm and Cold start scenarios. Moreover, Its worth to mention that
Cold start cases for Nomad are ignored because of technical issues while trying to
setup that on Nomad.

4.8.5 Environment Setup

In order to apply the experiment, we need to prepare the required infrastructure
and all applications/tools needed to conduct the experiment. The requirements for
environment setup specified as the following;:
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Instance Type t3a.large

vCPUs 2

RAM 8 GB

Volume (Hard Disk) | 15 GB

Operation System CentoOS Linux 7.6.1810

Table 4.3: Container Orchestrator Nodes Specification

Instance Type t3a.medium
vCPUs 2
RAM 4 GB

Volume (Hard Disk) | 15 GB
Operation System CentoOS Linux 7.6.1810

Table 4.4: FTP, Invoker and Load Balancer Nodes Specification

1. Infrastructure Setup: This includes the cloud infrastructure, virtual ma-
chines (nodes) and Operating Systems used for the experiment .

2. Applications Setup: This includes the programming languages runtimes/,
OpenFaaS Serverless framework, container orchestrators: Kubernetes, Nomad,
Docker Swarm, FTP server, faas-exp tool, proxy server and OpenFaaS CLI.

4.8.5.1 Infrastructure Setup

In this experiment we are going to use a cloud infrastructure powered by AWS °.
Morever, the number of nodes used are 6, 3 of them for container orchestrator cluster
and the rest for FTP, invoker and proxy nodes. Table 4.3 and Table 4.4 provide
details about the required specifications for these nodes.

4.8.5.2 Applications Setup

In order to conduct programming languages runtimes scenarios, we are going to
use 4 different programming languages specified in Table 4.5. Moreover, The latest
versions of OpenFaaS Serverless framework and CLI are going to be used as spec-
ified in Table 4.6 where OpenFaaS will deploy to the selected container orchestrators.

5AWS: https://aws.amazon.com/
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Programming Languages
Python3
Gol.13
Java8
NodeJS12.13.0

Table 4.5: Programming Languages Runtimes

OpenFaaS Serverless
OpenFaaS Framework 0.18.6
OpenFaaS CLI 0.11.2

Table 4.6: OpenFaaS Serverless

Container orchestrator | Version | Cluster Size | Docker version
Kubernetes 1.16.8 3 19.03.07
Docker Swarm 1.2.6 3 19.03.07
Nomad 0.8.4 3 19.03.07

Table 4.7: Container Orchestrators

Table 4.7 shows the version, size of the cluster for all selected container orchestra-
tors and also the version of docker used. HAProxy(1.5.18) © is used as proxy server
that balances the requests among the cluster workers. Moreover, Load testing tool is
a necessary which helps to generate HT'TP requests on behalf of users where Apache
Jmeter 7 which is part of faas-exp. The number of generated requests will be 35,000
requests. In addition, FTP server is also required for uploading/downloading files
where vsftpd ® is going to be used.

4.8.6 Experiment Tool

As mentioned before on the Data Analysis section, an open source project called
faas-exp ¥ is built for the purpose of automate everything in order to help conduct-
ing the experiment, collecting the result and do the comparison for this study. The
number of test cases required for this study is quite big where 260 test cases were

SHAProxy: http://www.haproxy.org/

"Apache Jmeter: https://jmeter.apache.org/
8vsftpd: https://security.appspot.com/vsftpd.html
9faas-exp: https://github.com/mabuaisha/faas-exp
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generated for the three container orchestrators as each one is going to have 90 test
cases for the 9 deployed functions except Nomad 80. As there are too many test cases
to handle, the need for having a tool that can help to automate that instead of doing
it manually was needed which played a crucial role to reduce the time and effort for
conducting the experiment,collecting results and even analyse them. Moreover, the
faas-exp is the entry point for this study which makes re-producing the experiment
much easier than previous works. Figure 4.3 represents the flow of faas-exp.

The functionalities of faas-exp can be divided into three main parts:

1. Infrastructure Provisioning & Configuration Management
2. Test Cases Generation.

3. Data Analysis and Visualization.

4.8.6.1 Infrastructure Provisioning & Configuration Management

The Infrastructure is an essential part in this study where virtual machines are
required to conduct the experiment. However, managing 18 VMs for the whole ex-
periment is a little bit complex which consumes time and effort where preparing
infrastructure environment ready for use requires to setup VMs, operating system,
network connectivity, security groups and internet connection to VMs. As experi-
ment will run multiple times for tuning purposes and deleting unused resources, using
faas-exp reduced the management complexity and helped to automate the provision-
ing and tearing down resources easily.

On the other hand, infrastructure provisioning is a prerequisite step for another
important phase "configuration management" where each container orchestrator
cluster has different configuration approach, software packages and dependencies
to complete its setup and the remaining nodes FTP, Invoker and Load Balancer also
require software packages. The faas-exp is using Terraform 0.12.21 ° for infrastruc-
ture provisioning and configuration management where the Terraform code provided
by faas-exp supports two cloud providers AWS & Openstack.

4.8.6.2 Test Cases Generation

The faas-exp provides the ability to conduct all the test cases for each container
orchestrator based on the defined performance metrics. Where JMeter load testing

OTerraform: https://releases.hashicorp.com/terraform/0.12.21/
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Figure 4.3: Faas-Exp Flow
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experiment:

server: gateway.openfaas.local
port: 80
number_of _runs: 6
number_of_requests: 35000
delay_between_runs: 1
replicas:

-1

- 10

- 20
concurrency:

-5

- 10

- 20

- 50

Listing 1: Snippet 1 Example of faas-exp config.

is integrated with faas-exp to help generate the HTTP requests based on the test
cases scenarios mentioned before. The snippet yaml file specified on Listing 1 is
part of configuration file that represents a common required settings needed to run
all tests cases for all Serverless functions. The main common snippet configuration
file provides number of total HTTP requests, number of experiment run, delay to
add between each runs, number of Serverless function replicas, concurrency levels
and finally the information of gateway endpoint. Moreover, the remaining part of
configuration file represents required information related to the Serverless function
need to be deployed. The yaml snippet file specifed in Listing 2 shows how functions
are represented from faas-exp perspective where function configuration yaml file,
HTTP method and some environment variables are set on the function level. All the
configuration files can be found on Appendix B
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functions:
- name: gofunction

yaml_path: functions/runtimes-scenarios/go/common/gofunction.yml

environment:
read_timeout: 5mbs
write_timeout: 5mbs

api:
uri: function/gofunction
http_method: POST

- name: javafunction
yaml_path: functions/runtimes-scenarios/java/common/javafunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/javafunction
http_method: POST

Listing 2: Snippet 2 Example of faas-exp config.

Figure 4.4 shows the flow of single experiment run for all deployed function test
cases.

4.8.6.3 Data Analysis and Visualization

The faas-exp generates the results for each test case as two type of data: summary
& statistics using the JMeter testing tool where summary.jtl & statistics.json files
were generated. The summary file contains the raw data related to the information
for each request initiated by the JMeter as specified on Table 4.8. On the other
hand, the statistics file contains summary of generated test case on single run as the
specified on Listing 3.
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"Total" : {
"transaction" : "Total",
"sampleCount" : 35000,
"errorCount" : O,
"errorPct" : 0.0,
"meanResTime" : 77.77742857142798,
"minResTime" : 9.0,
"maxResTime" : 1434.0,
"pctlResTime" : 125.0,
"pct2ResTime" : 141.0
"pct3ResTime" : 172.0,
"throughput" : 61.14274034774497,
"StdDev": 46.06056577053782,
"receivedKBytesPerSec" : 58.27515606138556,
"sentKBytesPerSec" : 12.498127162378522

B

Listing 3: Statistics JSON Example

timeStamp clapsed | responseCode | responseMessage | dataType | success | bytes | sentBytes | grpThreads | allThreads URL Latency
1589623070767 | 43 200 OK text true 234 194 3 3 http://gateway.openfaas.local /function/gofunction | 37
1589623070769 | 85 200 OK text true 234 [ 194 3 3 http: function /gofunction | 85
1589623070770 | 82 200 OK text true 234 194 3 3 http: function/gofunction | 75
1589623070775 | 6 200 OK text true 234 194 3 3 http://gateway.openfaas.local /function/gofunction | 6
1589623070780 | 11 200 OK text true 234 194 3 3 http://gateway.openfaas.local /function/gofunction | 11
1589623070781 | 11 200 OK text true 234 [ 194 3 3 http: vay.openfaas.local /function/gofunction | 11
1589623070782 | 6 200 OK text true 234 194 3 3 http: function/gofunction | 6
1589623070787 | 7 200 OK text true 234 194 3 3 http: function/gofunction | 7
1589623070792 | 9 200 OK text true 234 194 3 3 http: function/gofunction | 9
1589623070793 | 12 200 OK text true 234 [ 194 3 3 http: function /gofunction | 12
1589623070797 | 6 200 OK text true 234 194 3 3 http: function/gofunction | 6
1589623070799 | 6 200 OK text true 234 194 3 3 http: function/gofunction | 6
1589623070801 | 8 200 OK text true 234 194 3 3 http: function/gofunction | 8
1589623070805 | 8 200 OK text true 234 [ 194 3 3 http: function /gofunction | 7
158962307 6 200 OK text true 234 194 3 3 http: function/gofunction | 6
1589623070807 | 6 200 OK text true 234 194 3 3 http:// gz openfaas.local /function/gofunction | 6
1589623070812 | 7 200 OK text true 234 194 3 3 http: vay.openfaas.local /function/gofunction | 7
1589623070816 | 10 200 OK text true 234 [ 194 4 4 http: function /gofunction | 10
1589623070819 | 12 200 OK text true 234 194 4 4 http: function/gofunction | 12
1589623070822 | 6 200 OK text true 234 194 4 4 http://gateway.openfaas.local/function/gofunction | 6

Table 4.8: Sample of Load Testing Response

Additionally, the faas-exp has the ability to analyse and aggregate all the sum-
mary files in single run iteration for certain Serverless function deployed in all con-
tainer orchestrators for each test case. The faas-exp can generate the results which
represents median for all defined metrics and apply the Wilcoxon tests for all test
cases. Moreover, the faas-exp provides the ability to generate figures that compare
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the results between all container orchestrators of deployed function for certain test
case. Figure 4.5 shows the flow of data analysis and visualization.
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Figure 4.5: Faas-Exp Analysis Flow
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Chapter 5

Experiment Results

This chapter represents the results of conducting 4 main scenarios as mentioned in
Chapter 4 where each scenario is associated with different settings in order to measure
the performance of the required metrics on all defined container orchestrators for
deploying different Serverless functions using OpenFaas framework. All the results
were collected using faas-exp where raw data, figures and statistical analysis were
generated for all performance metrics response time, throughput and success rate.
AWS environment is the infrastructure used for the experiment and in order to avoid
and minimize network latency all tests were conducted on the same region us-east-
1(N. Virginia) and all the requests were invoked within AWS internal infrastructure
using the invoker node. All the results of the experiment were gathered within 15
days through 6 runs where the total number of HTTP requests was 35000 for each
run. Moreover, for each test case, the faas-exp was used in order to aggregate the
results of multiple iterations and analyzed them and generate the related figures. The
generated results helped to validate the 14 hypotheses set for this study and answered
the research questions. Moreover, the results of statistical tests using Wilcoxon
were collected and aggregated so that we can tell if the results between container
orchestrators are statistically significance and did not occur randomly or by chance.
We used two symbols A V to indicate that results are statistically significance p-
value < 5% between each container orchestrator for a given test case. The black
triangle means that if we have a relationship between X & Y then X performance
is better than Y. However, down triangle means that Y performance is better than
X. On the other hand, we used dash symbol (-) to indicate that results for a given
test case are not statistically significance and there is no difference between using X

&Y.
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5.1 Computation Scenarios

In this section the results of three main computation scenarios for I/O, CPU/Memory
and Network operations were collected and all functions were written in NodelJS.
The results of the computation test cases addresses the H;- Hg hypotheses about the
relationship between the operation type of the deployed Serverless function for each
performance metric and container orchestrators.

5.1.1 1I/0 Operation

This refers to the results of the Serverless function that performs I/O operation by
accepting a large string and dump it to the file system of the deployed function.
The results of the I/O operation for parallel and sequential test cases are shown in
Figures 5.1, 5.2 and 5.3.

Based on Figure 5.1, the parallel test cases with auto scaling enabled were gener-
ated and its clear that Docker Swarm performed better than others. Response time
was increasing as the number of users increased between all container orchestrators
which was something expected as the load increased. Docker Swarm had the smallest
response time among others. Success rate for both K8S and Docker Swarm were the
same with 100% success rate for all cases. However, Nomad had small percentage of
errors varied from 1% - 9%. Moreover, Docker Swarm achieved the best throughput
with 2x than K8S and 3x than Nomad as the highest value was observed when con-
currency level was 20 (1592 requests/second).

Figure 5.2 represents the cases where parallel workloads were generated using
fixed number of concurrency level 15 as the auto scaling was disabled for the I/0
Serverless function and the number of replicas set manually (1, 10, 20). Generally,
Docker Swarm performed better than other orchestrators. Response time started
with higher values for all orchestrators as there was only one replica serving all the
requests. Its noticeable that using 10 replicas had impact on response time for all
orchestrators. However, using 20 replicas had slightly increase in response time for
all orchestrators. The success rate was 100% for the initiated requests among all or-
chestrators. Moreover, throughput behaved the same way as response time where on
replica 20 there was a slightly decrease in throughput where theoretically it should
be increased as the number of replicas were increased. Docker Swarm performed 1.5x
faster than K8S and 3x than Nomad in terms of response time and throughput.
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Figure 5.3 represents test cases where sequential workloads with auto scaling dis-
abled were generated using one user at a time where different number of replicas was
set. Nearly the response time for both Docker Swarm and K8S were the same and
Nomad had the worst result. On the other hand, the success rate for all orchestrators
were identical. However, in general Docker Swarm performed better than others in
terms of throughput. Its clear from the results that increasing the number of repli-
cas for sequential workloads did not have noticeable impacts on the metrics as the
replicas may not fully utilized because of the sequential workload requests.

Tables 5.1, 5.2 and 5.3 specify the results of applying Wilcozon tests for all i/o
test cases between each container orchestrator.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s A A A A VVVYV k8s A AAA VVVYV
nomad VVVV nomad VVVV

(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s AAA- |
nomad VVV-

(c) Success Rate

Table 5.1: Wilcoxon I/O Parallel Auto Scaling Enabled

Table 5.1 represents the Wilcozon results for parallel workloads with auto scaling
enabled that covers four the concurrency levels (5, 10, 20, 50). Response time re-
sults were statistically significant between all container orchestrators where K8S had
better results than Nomad for all concurrency levels based on the black triangles.
Moreover, Docker Swarm performed better than both K8S & Nomad which aligned
with the results we obtained before. Moreover, throughput results were statistically
significant where K8S performed better than Nomad and Docker Swarm had better
result than all of them. Finally Success rate, also showed the same behavior and
confirmed the results we obtained are aligned with our statistical tests where K8S
and Docker Swarm had better results than Nomad and the results for Docker Swarm
and K8S were them same which explains the results we got from applying Wilcoxon
tests as there was no statistical significant result for success rate for them.
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‘ nomad ‘ swarm ‘ nomad ‘ swarm

k8s A A A VVyVv k8s A A A VVyV
nomad vV VV nomad vV VvV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s - -
nomad - — =

(c) Success Rate

Table 5.2: Wilcoxon I/O Parallel Auto Scaling Disabled

Table 5.2 represents the Wilcoxon results for parallel workloads with auto scaling
disabled using three different replica settings (1, 10, 20). The statistical tests for
both response time and throughput aligned with our results regarding the preferblil-
ity of Docker Swarm on both K8S and Nomad. The comparison between K8S &
Nomad showed that results were statistically significant and K8S performed better
than Nomad based on the direction of the black triangle for both response time and
throughput. Moreover, the comparison between K8S and Docker Swarm showed that
the results were statistically significant but Docker Swarm had better results than
K8S and the same thing applied for the relationship between Docker Swarm and
Nomad. Finally, the results for success rate showed that the results were not statis-
tically significant between all container orchestrators as they have the same success
rate.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s A A A V —— k8s A A A vV VV
nomad vV VYV nomad VVV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s -—= - ——
nomad -—=

(c) Success Rate

Table 5.3: Wilcoxon I/0O Sequential Auto Scaling Disabled
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Table 5.3 represents the Wilcoxon results for sequential workloads with auto
scaling disabled where both response time and throughput results for all three replica
settings had p-values < 5% based on the triangle symbols where Docker Swarm had
best results in all replica settings. However, its noticeable that for response time
the replicas (10, 20) had - values which means that results were not statistically
significant. Finally, Success rate results of all container orchestrators pairs for all
replica settings were identical which explains the results why the success rate were
not statistically significant.

5.1.2 CPU/Memory Operation

The CPU/Memory operation refers to the result of Serverless function that performs
multiplication of two dimensional matrices with different sizes varies from 10 X 10 to
200 X 200 which was the same function used by Back and V. Andrikopoulos [89]. The
Matrix function was written in NodeJS that covered both parallel and sequential test
cases. Figures 5.4, 5.5 and 5.6 represent the results for both parallel and sequential
test cases.

Figure 5.4 represents the generated results of parallel workload with auto scal-
ing enabled. Nomad preformed better than others in terms of response time and
throughput in all cases. However, K8S & Docker Swarm had 100% success rate
whereas Nomad had small percentage of errors 1%- 4%. There was an increasing
spike for response time with 50 concurrency level and its acceptable because the
number of concurrency levels increased and the complexity of the function was rel-
atively high and that explains also how the result of this function is compared to
previous function(I/O) as range of values were higher for response time and lower in
throughput.

Figure 5.5 shows how the results are presented using parallel workloads with auto
scaling disabled. The concurrency level set to 15 for all test cases where three different
values of replicas were used (1, 10, 20). Generally, the Docker Swarm performed
better than others in term of response time and throughput. Moreover, the success
rate was identical for all container orchestrators. Using only one replica had clear
impacts on both response time and throughput for all container orchestrators as one
replica will not be able to serve all the concurrent requests as it should be. On
the other hand, increasing the number of replicas showed an enchantment for both
response time and throughput where Docker Swarm achieved the highest throughput
(223 requests/second) at replica 10 and the lowest response time (37ms) at replica
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Figure 5.6 shows the results of sequential workloads with auto scaling disabled
where the Docker Swarm again performed better than others in term of response time
and throughput. However, the success rate was identical for all container orchestra-
tors. There was no impact for the number of increasing replicas when handling the
sequential workloads as there was only one request at a time which made other repli-
cas un-utilized. Moreover, result values of response time and throughput were less
than parallel workloads results.
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‘ nomad ‘ swarm ‘ nomad ‘ swarm

k8s VVVYV VVVV k8s VVVV VVVyV
nomad A A nomad A
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Table 5.4: Wilcoxon Matrix Multiplication Parallel Auto Scaling Enabled

Table 5.4 represents the Wilcoxon results for parallel workloads with auto scaling
enabled using four concurrency levels (5, 10, 20, 50). The results for response time
showed that both Docker Swarm and Nomad had better results than K8S where
the results for K8S with Docker Swarm and Nomad were statistically significant as
p-values < 5%. However, the results of (Nomad, Docker Swarm) pair were statisti-
cally significant on concurrency levels (10, 20). On the other hand, the results for
throughput showed that both Docker Swarm and Nomad had better results than
K8S where the results for (K8S, Nomad) & (K8S, Docker Swarm) were statistically
significant with p-values < 5%. The results for (Nomad, Docker Swarm) pair were
statistically significant on concurrency level (10) which was close to the results we
obtained before. Finally, the results for success rate were statistically significant for
(K8S, Nomad) & (Nomad, Docker Swarm) since Nomad had some error rate whereas
K8S and Docker Swarm had 100% success rate which explains the Wilcoxon results.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s —— A vV VvV k8s V — A vV VV
nomad vV VYV nomad VVV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s -—= - ——
nomad -—=

(c) Success Rate

Table 5.5: Wilcoxon Matrix Multiplication Parallel Auto Scaling Disabled
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Table 5.5 represents the Wilcozon results for parallel workloads with auto scaling
disabled using three different replica settings (1, 10, 20). The results of response time
were statistically significant for all pairs across all replica settings except for (K8S,
Nomad) pair on replicas (1, 10) which means the performance for Serverless func-
tion using these replicas under Nomad or K8S will have no impact on response time.
Moreover, the results of (K8S, Docker Swarm) & (Nomad, Docker Swarm) pairs were
statistically significant as Docker Swarm had best results than others. The through-
put results showed that all container orchestrators pairs using all replica settings were
statistically significant except of (K8S, Nomad) pair on replica 10. The results of
(K8S, Nomad) pair were statistically significant using replica settings (1, 20) where
Nomad had better results on replica 1 and K8S performed better on replica 20. On
the other hand, the results of (K8S, Docker Swarm) & (Nomad, Docker Swarm) pairs
were statistically significant with p-values < 5%. Finally, the results of success rate
on all pairs were not statistically significant since the success rate were identical in
all replicas for all container orchestrators.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s —— A vV VV k8s V — A vV VvV
nomad vV VvV nomad vVVV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s - -
nomad - — =

(¢c) Success Rate

Table 5.6: Wilcoxon Matrix Multiplication Sequential Auto Scaling Disabled

Table 5.6 represents the Wilcoxon results for sequential workloads with auto
scaling disabled using the same replica settings used before. The results of response
time, throughput were statistically significant with p-values < 5% and similar to
the results we obtained on previous parallel test cases with disabled auto scaling.
Finally, the results for success rate in all test case across all pairs are not statistically
significant.
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5.1.3 Network Operation

The network operation refers to the result of Serverless function that preforms down-
loading file from FTP server that reside on the same network of container orches-
trators to reduce any overhead and network latency. The function was written in
NodeJS which covered both parallel and sequential test cases. Figures 5.7, 5.8 and
5.9 specify the results collected.
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Figure 5.7: Network Parallel Auto Scaling Enabled

Figure 5.7 represents the collected results of parallel workloads with auto scaling
enabled. Nomad performed better than others in term of response time. However,
Nomad had the worst value for success rate where error percentage was the high-
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est and varied from 46% - 67% specially with concurrence levels (10, 20, 50) and
both K8S and Docker Swarm had small error percentage with concurrency level 50.
On the other hand, the throughput values in all concurrency levels for all container
orchestrators were closed to each other with preferability to K8S. The parallel work-
loads with increasing concurrency levels had noticeable impacts on the success rate
especially for Nomad and this could be because of the Nomad provider was not able
to initiated enough number of replicas to serve all the requests which explains the
low success rate.
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Figure 5.8: Network Parallel Auto Scaling Disabled

Figure 5.8 shows the results of parallel workloads with auto scaling disabling
where the replicas were set manually. The same as other functions, the concurrency
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level was fixed and set to 15 for all test cases. Nomad performed slightly better
than others in term of response time and throughput where they almost close to
each other. The success rate was identical for all container orchestrators with 100%
success rate as the number of replicas were able to serve all the required requests

which connected to the FTP server and download a file.
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Figure 5.9: Network Sequential Auto Scaling Disabled

Figure 5.9 shows the results of sequential workloads with auto scaling disabled.
The concurrency level for this case was set to one request at a time and its obvious
from the result above that increasing the number of replicas had almost zero impact
on the response time and success rate as the number of replicas were not utilized.
Generally, Docker Swarm performed better than others in terms of throughput. How-
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ever, the success rate of all container orchestrators are the same and the response
time values nearly the same and close to each other.
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Table 5.7: Wilcoxon Network Parallel Auto Scaling Enabled

Table 5.7 represents the Wilcozon results for parallel workloads with auto scaling
enabled using four concurrency levels (5, 10, 20, 50) where response time results
were statistically significant between all container orchestrators pairs where p-values
for all concurrency levels < 5% which aligned with our previous results. It’s clear
from the triangles direction that both K8S & Nomad performed better than Docker
Swarm. On the other hand, Nomad performed better than K8S. The throughput re-
sults were statistically significant for all concurrency levels of (K8S, Docker Swarm)
pair where K8S performed better than Docker Swarm. However, the results of other
pairs (K8S, Nomad), (Nomad, Docker Swarm) were statistically significant on (5,
50) & (10, 50) replica settings respectively. Moreover, the success rate results were
statistically significant for all container orchestrators pairs. The result of (K8S, No-
mad) pair were statistically significant for all concurrency levels because of the high
differences between their success rates. However results of (Nomad, Docker Swarm)
were statistically significant in all concurrency levels except on level 5. Finally, the
results for pair (K8S, Docker Swarm) were statistically significant on concurrency
level 50 where Docker Swarm performed better thank KS8S.

Table 5.8 represents the Wilcozon results for parallel workloads with auto scaling
disabled using three different replica settings (1,10,20). The response time results
were statistically significant between all container orchestrators pairs for all replica
settings with p-values < 5% except on (K8S, Docker Swarm) pair using replica 20.
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nomad - — =
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Table 5.8: Wilcoxon Network Parallel Auto Scaling Disabled

The response time results showed that Nomad performed better than K8S & Docker
Swarm on all replica settings. The same thing applied for throughput where the
results of all pairs tests were statistically significant except on replica 20 for pair
(K8S, Docker Swarm) and on replica 1 for pair (Nomad, Docker Swarm). Finally,
the results of success rate for all pairs were not statistically significant where they
had the same success rate across all replica settings.
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(a) Response Time (b) Throughput
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Table 5.9: Wilcoxon Network Sequential Auto Scaling Disabled

Table 5.9 represents the Wilcoxon results for sequential workloads using the same
replica settings used before. The results were statistically significant with p-values <
5% for response time and throughput. The results of response time were statistically
significant on all container orchestrators pairs except on replica 1 for (K8S, Nomad)
pair and on replicas (10, 20) for (K8S, Docker Swarm) which aligned with the results
we obtained before. On the other hand, the results for throughput were statistically
significant for all replicas across all pairs where Docker Swarm performed better than
others and K8S performed better than Nomad on replicas (1,10). Finally, the results
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for success rate of all container orchestrators pairs were not statistically significant
as they all have 100% success rate across all replica settings.

5.2 Programming Languages/Runtimes Scenarios

This section represents the results of four Serverless functions which were written
using three programming languages and JavaScript runtime environment (NodelJS)
to compare the defined metrics for each programming language. The results of
the programming languages test cases addresses the Hy1-His hypotheses about the
relationship between the programming language of the deployed Serverless function
and container orchestrator.

5.2.1 Python Function

This scenario represents a Serverless function that was written in Python 3 which
returns a simple message on call invocation. This scenario covered both parallel and
sequential test cases as specified in Figures 5.10, 5.11 and 5.12.

Figure 5.10 shows the results of the parallel workloads requests with auto scaling
enabled. Docker Swarm relatively performed better than others in term of response
time and throughput. Success rate for both Docker Swarm and K8S were identi-
cal whereas Nomad had a small error percentage 1%. Response time was increased
as the number of concurrency levels increased which was expected because of the
high loads where Docker Swarm had the lowest response time (7ms). Moreover, the
throughput was increased with increasing the number of concurrency levels as the
number of replicas will be increased based on the requests load where Docker Swarm
achieved the highest throughput (791 requests/second) on concurrency level 50.

Figure 5.11 represents the results of parallel workloads requests with auto scaling
disabled where number of concurrency level set to 15 and used different number of
replicas (1, 10, 20). The Docker Swarm performed better than others in term of
response time and throughput. The success rate was identical for all container or-
chestrators. On the other hand, the highest throughput achieved when the number
of replicas was set to 10 where the Docker Swarm had the best result (1243 request-
s/second). Comparing the results with enabled auto scaling its obvious that response
time and throughput with 10 replicas had better performance.
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Figure 5.12 shows the results of sequential workloads with auto scaling disabled.
3 different replicas number used (1, 10, 20) by applying a sequential workloads where
one request a time generated by the faas-exp. Based on these results, increasing the
number of replicas had nearly no impact on response time, throughput and success
rate as it seems only one replica was enough to serve all requests. Response time
was identical for both Docker Swarm and K8S and had a higher values on Nomad.
Moreover, success rate was identical for all container orchestrators. However, Docker
Swarm performed better than others in term of throughput in all replicas settings.
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Table 5.10: Wilcoxon Python Parallel Auto Scaling Enabled

Table 5.10 represents the Wilcoxon results for parallel workloads using four con-
currency levels (5, 10, 20, 50). The results for response time, throughput and success
rate were statistically significant with p-values < 5%. The response time results were
statistically significant for all container orchestrators pairs using all concurrency lev-
els except on level 50 for (K8S, Nomad) & (Nomad, Docker Swarm). The response
time for Docker Swarm performed better than others which aligned with the results
we obtained before. On the other hand, the throughput results of all container or-
chestrators pairs were statistically significant for all concurrency levels where Docker
Swarm and K8S performed better than Nomad. Finally, the results for success rate
were statistically significant for (K8S, Nomad) & (Nomad, Docker Swarm) only since
Nomad had some error rate which explain the result we obtained before.

Table 5.11 represents the Wilcoxon results for parallel workloads with auto scal-
ing disabled using three replica settings (1, 10, 20) where both response time and
throughput results were statistically significant for all container orchestrators pairs
under all replica settings for p-values < 5%. the results of K8S & Docker Swarm
performed better than Nomad which aligned with the results we obtained before.
However, the results of success rare for all container orchestrators pairs using all

89



‘ nomad ‘ swarm ‘ nomad ‘ swarm

k8s A A A VVyVv k8s A A A VVyV
nomad vV VV nomad vV VvV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s - -
nomad - — =

(c) Success Rate

Table 5.11: Wilcoxon Python Parallel Auto Scaling Disabled

replica settings were not statistically significant as the success rate were 100% for all
container orchestrators.
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Table 5.12: Wilcoxon Python Sequential Auto Scaling Disabled

Table 5.12 represents the Wilcoxon results for sequential workloads using the same
replica settings used before where response time and throughput were statistically
significant with p-values < 5% for all container orchestrators pairs in all replicas
except on (K8S, Docker Swarm) on replica 20 for response time results. Finally, the
results for success rate were not statistically significant for all container orchestrators
pairs using all replica settings as they had the same success rate results.
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5.2.2 NodedJS Function

This scenario represents a Serverless function that was written in NodeJS 12 that
returns a simple message on call invocation. It covered both parallel and sequential
test cases as specified on Figures 5.13, 5.14 and 5.15.
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Figure 5.13: NodeJS Parallel Auto Scaling Enabled

Figure 5.13 shows the generated results of parallel workloads with auto scal-
ing enabled. The Docker Swarm performed better in terms of response time and
throughput than others. Success rate was identical for both Docker Swarm and K8S
whereas Nomad had an noticeable error rate 20% on concurrency level 10 and small
1% on (5, 20) levels. Docker Swarm had 2X throughput than Nomad and nearly
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1.5X better than K8S where the highest value was achieved on concurrency level
20 (1411 requests/second). Moreover, Docker Swarm achieved the lowest response
time (4ms) at concurrency level 5. Comparing the results of Python function with
NodeJS, NodeJS performed better in terms of all metrics.
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Figure 5.14: NodeJS Parallel Auto Scaling Disabled

Figure 5.14 shows the results of parallel workloads with auto scaling disabled
where the number of concurrency level set to 15 and different number of replicas
used (1, 10, 20). Docker Swarm performed better than others in terms of response
time and throughput where it achieved the highest throughput (1533 request/sec-
ond) on replica 10 and lowest response time (8ms) at both replica (10,20). Success
rate was identical for all container orchestrators. Increasing the number of replicas
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had positive impact on response time and throughput in all container orchestrators
except Nomad where response time did not change among all replicas and through-
put did not show so much enhancement. The explanations for Nomad results could
be because that Nomad provider was not able to initiate the required number of
replicas inside the Nomad cluster to serve all requests.
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Figure 5.15: NodeJS Sequential Auto Scaling Disabled

Figure 5.15 shows the results of sequential workloads with auto scaling disabled
where different number of replicas used (1, 10, 20). Docker swarm performed slightly
better than others in terms of response time and throughput. The range values of
response time results were very close to each other whereas throughput range values
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varied and the preferability was for the Docker Swarm where the highest achieved
throughput was (386 requests/second) on replica 1 and the lowest response time
(2ms) was on all replicas. On that other hand, the success rate for all container
orchestrators was identical. Based on the result presented, increasing number of
replicas had no impact on the the defined metrics as it appeared that only one
replica was utilized which explain those results.
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Table 5.13: Wilcoxon NodeJS Parallel Auto Scaling Enabled

Table 5.13 represents the Wilcoxon results for parallel workloads with auto scal-
ing enabled using four concurrency levels (5, 10, 20, 50) where the results for all
metrics were statistically significant for all container orchestrators pairs. The re-
sponse time results for all pairs were statistically significant with p-values < 5%
which aligned with our previous results where Docker Swarm and K8S performed
better than Nomad. Moreover, the throughput results were statistically significant
between all pairs with p-values < 5% and the results showed how Docker Swarm per-
formed better than K8S & Nomad. Finally, the success rate results were statistically
significant for (K8S, Nomad) & (Nomad, Docker Swarm) pairs on all concurrency
levels except on level 50 and it’s noticeable that the results of (K8S, Docker Swarm)
were not statistically significant as they had the same success rate in all concurrency
levels. All the previous statistical tests aligned with our previous results about the
behaviour of NodelJs function deployed across different container orchestrators.

Table 5.14 represents the Wilcoxon results for parallel workloads with auto scaling
disabled using three different replica settings (1, 10, 20) where all the collected
results were statistically significant for response time and throughput of all container
orchestrators pairs. The results of response time were statistically significant for all
replica settings between all container orchestrators pairs with p-values < 5%. The
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Table 5.14: Wilcoxon NodeJS Parallel Auto Scaling Disabled

same thing also applied to the results obtained for throughput where the direction
and color of triangles showed that all p-values < 5% and how the Docker Swarm
performed better than both Nomad and K8S and how K8S also performed better
than Nomad. Finally, based on the results provided from the Wilcoron tests, the
results were not statistically significant between all container orchestrators pairs as
all of them had the same success rate
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Table 5.15: Wilcoxon NodeJS Sequential Auto Scaling Disabled

Table 5.15 represent the Wilcoxon results for sequential workloads with auto scal-
ing disabled using the same replica settings used before where the results of response
time and throughput were statistically significant for all container orchestrators pairs
with p-values < 5%. The statistical tests obtained for sequential workloads were
similar to the results of parallel workloads with auto scaling disabled for all metrics
results across all replica settings.
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5.2.3 Java Function

This scenario represents a Serverless function was written in Java 8 that returns
simple message on call invocation. This function used a complied programming lan-
guage where previous two functions were used interpreted languages. It covered both
parallel and sequential test cases as illustrated on Figures 5.16, 5.17 and 5.18.
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Figure 5.16: Java Parallel Auto Scaling Enabled
Figure 5.16 shows the results for parallel workloads with auto scaling enabled.
Nomad performed better than others in terms of response time and throughput in

all concurrency levels except on level 50 where Docker Swarm and K8S were bet-
ter. Success rate was identical for both Docker Swarm and K8S whereas the Nomad
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has error rate varied form 10% - 28%. Docker Swarm only had a better results of
response time and throughput on concurrency level 50 where it achieved (1084 re-
quests/second) and (43 ms) whereas Nomad achieved the highest throughput (632)
on concurrency level 20 and the lowest response time (7ms) on concurrency level 5.
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Figure 5.17: Java Parallel Auto Scaling Disabled

Figure 5.17 represents the results of parallel workloads with auto scaling disabled
where fixed number of concurrency level set to 15 and different number of replicas
was used (1, 10, 20). Nomad had the best results in terms of response time and
throughput using all replicas where it achieved the highest throughput (641 request-
s/seconds) on replica 10 and the lowest response time (19ms) at both replica (1, 10).
However, success rate for both Docker Swarm and K8S was the same with 100%,
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whereas Nomad had some error rate varied from 3% - 18%. It was observable that
for all container orchestrators the increasing on replicas had no clear impact on the
response and throughput results.

. k8s mmm nomad N swarm . k8s mmm nomad N swarm

43 a 43 2 43 43 100 100 100 100 100 100 100 100 100
100 4

40

80 4

30 4

60

204
40 1

Response Time (Median)
Success Rate (Median)

10 +
20 4

4 4 4

1 10 20 1 10 20
Sequential None Auto Scaling (Replicas) Sequential None Auto Scaling (Replicas)

(a) Response Time (b) Success Rate

. k8s mmm nomad N swarm

237

I N
=3
=} =)

H
153
S

Throughput (Median)

50 1

10
Sequential None Auto Scaling (Replicas)

(¢) Throughput

Figure 5.18: Java Sequential Auto Scaling Disabled

Figure 5.18 shows the results of sequential workloads with auto scaling disabled
that used different replicas settings (1, 10, 20). Nomad performed better than others
in terms of response time and throughput in all replica settings where it achieved the
highest throughput (237 requests/second) on replica 1 and the lowest response time
(4ms) in all replicas . Success rate had identical results for all container orchestrators
with 100% success rate. Nomad had 9X throughput than K8S and Docker Swarm
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and 10X response time enchantment.It was noticeable that increasing the replicas
had no clear impacts on the results for all container orchestrators because they were
not fully utilized and only one replica could be enough to handle all requests.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s VVV—- | VVVYV k8s VVVA VVVyV
nomad AAAVY nomad AAAV

(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s AAAA |
nomad VVVV

(c) Success Rate

Table 5.16: Wilcoxon Java Parallel Auto Scaling Enabled

Table 5.16 represents the Wilcoxon results for parallel workloads with auto scal-
ing enabled using four concurrency levels (5, 10, 20, 50) where the response time,
throughput and success rate results were statistically significant for all container
orchestrators pairs with some exceptions. The response time results were statisti-
cally significant for all pairs using all concurrency levels except for level 50 of (K8S,
Nomad) pair. Based on the statistical tests results for response time, the (K8S,
Nomad) pair p-values < 5% with preferability to Nomad on all concurrency levels
except on level 50. Moreover, the results of (K8S, Docker Swarm) p-values < 5%
where Docker Swarm performed better than K8S and the p-values results of (Nomad,
Docker Swarm) pair < 5% where Nomad performed better on (5, 10, 20) based on
the color and direction of triangles. On the other hand, the throughput results were
statistically significant for all pairs on all concurrency levels except on level 50 for
(K8S, Nomad) & (Nomad, Docker Swarm). Finally, the success rate results were
statistically significant for (K8S, Nomad) & (Nomad, Docker Swarm) pairs where
p-values < 5% for all concurrency levels and the results aligned with our previous
results for success rate results.

Table 5.17 represents the Wilcoxon results for parallel workloads with auto scal-
ing disabled using three different replica settings where all the results of the metrics
were statistically significant for all container orchestrators pairs except for success
rate results of (K8S, Docker Swarm) pair. The results of response time and through-
put were statistically significant with p-values < 5% for all replica settings and the
preferability went to Nomad over K8S & Docker Swarm which aligned with our
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Table 5.17: Wilcoxon Java Parallel Auto Scaling Disabled

previous results. Finally, the success rate results were statistically significant for
(K8, Nomad) & (Nomad, Docker Swarm) because of the error rate generated on the
Nomad side which explains the statistical test results.
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Table 5.18: Wilcoxon Java Sequential Auto Scaling Disabled

Table 5.18 represents the Wilcoxon results for sequential workloads with auto
scaling disabled using the same replica settings used before where both response time
and throughput results are statistically significant for all container orchestrators pairs
using all replicas except on (K8S, Docker Swarm) pair using replica 20. The response
time and throughput statistical are nearly similar to the results we obtained for
parallel test cases with auto scaling disabled where p-values < 5% where preferability
of results are for Nomad based on the direction and color of the triangles. However,
the results for success rate are not statistically significant for any of the defined pairs
as all of the container orchestrators have the same success rate across all runs using
all defined replica settings.
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5.2.4 Go Function

This scenario represents a Serverles function written in Go 1.13 that returns a simple
message on call invocation. Go is categorized as complied programming language like
Java. Figures 5.19, 5.20 and 5.21 present results of parallel and sequential test cases.
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Figure 5.19: Go Parallel Auto Scaling Enabled

Figure 5.19 represents the results of parallel workloads with auto scaling enabled.
Docker Swarm performed better than others in term of response time and through-
put. Success rate was identical for both Docker Swarm and K8S. However, the success
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rate had the worst result for Nomad where error rate was > 76%. Docker Swarm
achieved the highest throughput between others on concurrency level 10 with (543
requests/seconds) where it had 2X performance than Nomad and nearly 1.5X than
K8S. Moreover, it achieved the lowest response time (8ms) on concurrency level 5.
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Figure 5.20: Go Parallel Auto Scaling Disabled

Figure 5.20 represents the results of parallel workloads with auto scaling disabled
where fixed concurrency level set to 15 and different number of replicas used (1,
20, 20). Docker Swarm performed better than others in terms of response time and
throughput in all test cases. However, success rate results were identical for both
Docker Swarm and K8S whereas Nomad had the worst success rate results where
error rate > 76%. Increasing the number of replicas had noticeable impact for both

102




Docker Swarm and K8S in terms of response time and throughput and small impact
for Nomad. Docker Swarm achieved the highest throughput on replica 20 with (835
requests/second) and lowest response time (16ms) on replica 20 as well.
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Figure 5.21: Go Sequential Auto Scaling Disabled

Figure 5.21 represents the results of sequential workloads with auto scaling dis-
abled where one request at a time was sent and different number of replicas was
used (1, 10, 20). Docker Swarm and K8S had identical results for response time and
success rate. However, Nomad had worst result in terms of all metrics, especially
for success rate where the error rate was high and varied from 11% - 56%. On the
other hand, Docker Swarm performed better than K8S using replicas 1 &10 and
KS8S had the preferability on replica 20. Generally, Increasing replicas for sequential
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workloads had small impact on throughput and no impact on response time for all
container orchestrators. The reason of the high error rate for Nomad was because
of Bad Gateway (502) responses where the OpenFaas gateway was unable to get the
response back from the created function (container).

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s A A AA VVVyV k8s A AAA VVVyV
nomad VVVV nomad VVVV

(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s A AAA |
nomad VVVV

(c) Success Rate

Table 5.19: Wilcoxon Go Parallel Auto Scaling Enabled

Table 5.19 represents the Wilcoxon results for parallel workloads with auto scal-
ing enabled using four concurrency levels (5, 10, 20, 50) where the results of response
time, throughput and success rate were statistically significant for all container or-
chestrators pairs on all concurrency levels with an exception for success rate result
of (K8S, Docker Swarm) where they had the same success rate results which ex-
plains why the statistical tests were not significant. It’s clear that both response
time and throughput for container orchestrators pairs under all concurrency levels
were statistically significant where p-values < 5%. Moreover, the direction and color
of triangles showed how K8S & Docker Swarm performed better than Nomad which
aligned with our previous results. Finally, the success results were statistically sig-
nificant for (K8S, Nomad) & (Nomad, Docker Swarm) pairs where p-values < 5% of
all replica settings because of the high error rates on Nomad.

Table 5.20 represents the Wilcoxon results for parallel workloads with auto scaling
disabled using three different replica settings (1, 10, 20). The results of response
time, throughput and success rate were statistically significant and aligned with
our previous results. The results of response time and throughput for all container
orchestrators pairs were statistically significant with p-values < 5% except on replica
10 of (K8S, Docker Swarm). Based on the direction and color of triangles, the
results showed how both Docker Swarm and K8S performed better than Nomad
which aligned with our previous results. Finally, the results of success rate were
statistically significant for (K8S, Nomad) & (Nomad, Docker Swarm) pairs because

104



‘ nomad ‘ swarm ‘ nomad ‘ swarm

k8s A A A V-V k8s A A A V-V
nomad vV VV nomad vV VvV
(a) Response Time (b) Throughput

‘ nomad ‘ swarm
k8s A A A - ==
nomad vV VvV

(c) Success Rate

Table 5.20: Wilcoxon Go Parallel Auto Scaling Disabled

of the high error rates on Nomad which explains the result of the p-values < 5%.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s A A A - == k8s A A A VvV ——
nomad vV VvV nomad VVV

(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s A A A - — =
nomad vV V-

(c) Success Rate

Table 5.21: Wilcoxon Go Sequential Auto Scaling Disabled

Table 5.21 represents the Wilcoron results for sequential workloads with auto
scaling disabled using the same replica settings used before. The results for response
time, throughput and success rate were statistically significant mainly for (K8S, No-
mad) & (Nomad, Docker Swarm) pairs where the relationship between Docker Swarm
and K8S were not statistically significant which means that running go function ei-
ther on Docker Swarm or K8S under sequential workloads for all replica settings will
not make a difference except for throughput on replica 1 of (K8S, Docker Swarm)
pair where p-value is < 5%.
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5.3 Chaining Serverless Functions Scenario

This section represents the results of invoking chaining Serverless functions where
source function invokes destination function that accepts the dimension of matrix
to do a matrix multiplication. For example if source function pass parameter = 20,
then the destination function will initialize two matrices with 20 X 20 by applying
matrix multiplication and return the result. Figures 5.22, 5.23 and 5.24 represent
both parallel and sequential test cases.
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Figure 5.22 shows the results of parallel workloads with auto scaling enabled.
Docker Swarm performed better than other in terms of response time and through-
put. The success rate had identical results for Docker Swarm and K8S whereas
Nomad had error rate varied from 7% - 30% on concurrency level 5 and 50. On the
other hand, Docker Swarm achieved the highest value on concurrency level 50 (114
requests/second) and had best results over others in all concurrency levels. More-
over, Nomad and K8S nearly had the same throughput results.

Figure 5.23 shows the results for parallel workloads with auto scaling disabled
where fixed concurrency level 15 and different settings of replicas (1, 10, 20) were
used. Docker Swarm performed better than others in terms of response time and
throughput for all replicas except on replica 10 where K8S had better result for
throughput recorded as (94 requests/second) comparing to (92 requests/second).
Moreover, success rate had identical result for both Docker Swarm and K8S whereas
Nomad had error rate varied from 4% - 45%.

Figure 5.24 shows the results of sequential workloads with auto scaling disabled
where 15 concurrency level and different settings of replicas (1, 10, 20) were used.
Docker Swarm and K8S had results close to each other in terms of response time and
throughput with very small variations in results whereas Nomad had worst results
among them for response time and throughput. Moreover, success rate had identical
results for all container orchestrators. Its noticeable that the range of throughput
result values were low for all container orchestrators and the reason was the com-
plexity of chaining functions, implementation logic and the sequential workloads
where only one request at a time was sent. Finally, the increasing on replicas for
sequential workloads had no observable impact on the response time and throughput.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s AAA- | VVVYV k8s A A A VVVV
nomad VVVV nomad VVVYV
(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s A—— A |————
nomad V-——-V

(c) Success Rate

Table 5.22: Wilcoxon Serverless Chaining Parallel Auto Scaling Enabled
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The table 5.22 represents the Wilcozon results for parallel workloads with auto
scaling enabled using four concurrency levels (5, 10, 20, 50). The results were sta-
tistically significant for all metrics. The results for response time for all container
orchestrators pairs were statistically significant with p-values < 5% for all concur-
rency levels except on level 50 for (K8S, nomad) pair. On the other hand, the results
(K8S, Docker Swarm) & (Nomad, Docker Swarm) pairs were statistically significant
where Docker Swarm had the preferability among other orchestrators. The same
thing applied for throughput results where all container orchestrators pairs were sta-
tistically significant with p-values < 5% for all concurrency levels except on level 20
for (K8S, nomad) pair. Finally, the success rate results were statistically significant
on concurrency levels (10, 50) for (K8S, Nomad) & (Nomad, Docker Swarm) pairs.

‘ nomad ‘ swarm ‘ nomad ‘ swarm
k8s — A A V —— k8s A A A V A —
nomad vV VYV nomad vV VvV

(a) Response Time (b) Throughput
‘ nomad ‘ swarm
k8s A A - — =
nomad V-V

(c) Success Rate

Table 5.23: Wilcoxon Serverless Chaining Parallel Auto Scaling Disabled

Table 5.23 represents the Wilcoxon results for parallel workloads with auto scal-
ing disabled using three different replica settings (1, 10, 20). The results were sta-
tistically significant for all container orchestrators pairs at least for one replica in all
metrics except for success rate where only two pairs were statistically significant with
p-values < 5% (K8S, Nomad) & (Nomad, Docker Swarm). The response time re-
sults were statistically significant on all replica settings for (Nomad, Docker Swarm)
where Docker Swarm achieved better results. Moreover, the results of (K8S, Nomad)
& (K8S, Docker Swarm) pairs were also statistically significant on replica settings
(10, 20), (1) respectively. On the other hand, the throughput results for (K8S, No-
mad) & (Nomad, Docker Swarm) were statistically significant on all replica settings.
However, the throughput results for (K8S, Docker Swarm) were statistically signifi-
cant only on replica settings (1, 10). All the statistical tests aligned with the results
we obtained before for chaining function test cases. Finally, the success rate results
were only statistically significant for (K8S, Nomad) & (Nomad, Docker Swarm) on
replica settings (1, 20).
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‘ nomad ‘ swarm ‘ nomad ‘ swarm

k8s A A A —— A k8s A A A V— A
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(a) Response Time (b) Throughput

‘ nomad ‘ swarm
k8s - -
nomad - — =

(c) Success Rate

Table 5.24: Wilcoxon Serverless Chaining Sequential Auto Scaling Disabled

Table 5.24 represents the Wilcoxon results for sequential workloads using the
same replica settings in previous test cases. The generated statistical tests showed
that all container orchestrators pairs were statistically significant for response time
and throughput at least using one of the replica settling defined where p-values < 5%.
The response time and throughput for (K8S, Nomad) & (Nomad, Docker Swarm)
pairs were statistically significant using all replica settings. However, the response
time and throughput for (K8S, Docker Swarm) pair were statistically significant on
replica settings 20, (1, 20) respectively. Finally, the success rate for all container
orchestrators pairs were not statistically significant using all replica settings as all
the orchestrators share the same success rate across all result runs.

5.4 Warm and Cold Start Scenario

This section represents the results of enforcing cold start for Serverless functions by
configuring the inactivity duration provided by OpenFaas framework where it was
set to 6 minutes which means if no request hit the function within this period it
will be scaled automatically to zero replicas instead of keeping the function alive
without doing anything. On the other hand, warm start results were also collected
and compared with cold start results. Conducting this scenario was different from
others where invocation of total requests was divided into 6 intervals (chunks) that
simulated warm and cold start scenarios as shown in Figure 5.25 where the results of
3 pairs (warm —> wait —> cold) were generated. The warm & cold start scenario
addresses Hi3-Hq5 hypotheses.

Based on Figure 5.25 between each interval (chunk) there was an idle inactivity
duration for 10 minutes which was larger than the configured inactivity for OpenFaas
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Figure 5.25: Warm & Cold Start Flow

framework. The reason of selection both 6 & 10 minutes was to simplify conducting
this scenario as it took 2.5 days to complete it and generate the related results and
to make sure that the enforcing of cold start was triggred successfully.

The function implemented for this scenario was written in NodeJS 12 with simple
logic that accepts string parameter and return it as simple JSON object. The reason
for using this simple implementation was to study the impact of cold/warm start
without any other factors that could affect the result. Figures 5.26 - 5.34 represent
the results of parallel and sequential test cases for all warm & cold pairs.
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Figure 5.33: Third Pair (Warm & Cold) Parallel Auto Scaling Disabled
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Figures 5.26, 5.29 and 5.32 represent the results of parallel workloads with auto
scaling enabled generated from all warm & cold pairs. Docker Swarm performed bet-
ter than K8S in terms of throughput and response time for warm requests in all cases
where Docker Swarm achieved the highest throughput (1897 requests/second) with
concurrency level 50 and the lowest response time (3ms). Success rate was identical
for Docker Swarm and K8S for both warm and cold requests with 100% success rate.
However, K8S performed better than Docker Swarm in terms of response time for
cold requests where its noticeable in concurrency levels (20, 50) where it achieved
the lowest response time (3ms) at concurrency level 50.

Figures 5.27, 5.30 and 5.33 represent the results of parallel workloads with auto
scaling disabled generated from all warm and cold pairs. Docker Swarm performed
better than K8S in terms of response time and throughput for warm requests nearly
in all test cases where Docker Swarm achieved the highest throughput (1712 request-
s/seconds) and the lowest response time on one replica with (6ms). Success rate had
identical results for both Docker Swarm and K8S with 100% success rate in all test
cases for both cold & warm requests. However, K8S performed better than Docker
Swarm for cold requests in terms of response time in all test cases where it achieved
the lowest result (6ms) at replica one.

Figures 5.28, 5.31 and 5.34 represent the results of sequential workloads with auto
scaling disabled generated from all warm and cold pairs. Docker Swarm and K8S
had identical results for both success rate and response time for all replica settings
in warm & cold requests where increasing the number of replicas had no impact
on response time and success rate. Comparing the results of throughput for both
warm & cold requests, its noticeable that results were close to each other with some
preferability to the K8S over Docker Swarm.

Tables 5.25, 5.26 and 5.27 represents the Wilcoxon results of all warm and cold
pairs for parallel and sequential test cases using different concurrency levels and
replica settings between K8S and Docker Swarm. Table 5.25 represents the Wilcoxon
results of parallel workloads with auto scaling enabled using four concurrency levels
(5, 10, 20, 50) for all previous warm and cold pairs results. The results were statisti-
cally significant with p-values < 5% for response time and throughput for both warm
and cold test cases using all concurrency levels except for cold scenario of response
time using replica 10. The results generated explained how the Docker Swarm per-
formed better than K8S based on the direction of the triangles where most of them
had down triangles which means that K8S had worst results than Docker Swarm
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Table 5.25: Wilcoxon (Warm & Cold) Parallel Auto Scaling Enabled

except on cold test cases for levels (20, 50) where K8S had best results. Finally,
the results for success rate were not statistically significant between K8S & Docker
Swarm since they had the same success rate across all results.
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Table 5.26: Wilcoxon (Warm & Cold) Parallel Auto Scaling Disabled

Table 5.26 represents the Wilcoxzon results of parallel workloads with auto scal-
ing disabled using three replica settings (1, 10, 20) for both cold and warm test
cases. The results were statistically significant with p-values < 5% for response time
and throughput for all replica settings except on warm test case on replica 10 for
response time and throughput on replica 20 where K8S & Docker Swarm had the
same results. In general, the results for response time showed how K8S performed
better than Docker Swarm whereas throughput results showed the preferability of
Docker Swarm over K8S. All statistical tests were aligned with our results we ob-
tained before. Finally, the results for success rate were not statistically significant
between K8S & Docker Swarm since they had the same success rate across all results.
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Table 5.27: Wilcoxon (Warm & Cold) Sequential Auto Scaling Enabled

Table 5.27 represents the Wilcoxon results of sequential workloads with auto
scaling disabled using the same replica settings for both warm and cold start test
cases. The results were only statistically significant for throughput with p-values <
5% on replica settings (1, 20) where K8S performed better on replica 20 and Docker
Swarm on replica 1. However, both response time and success rate results were not
statistically significant.
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Chapter 6

Discussion

This chapter represents the discussion of the study based on our observed results
after conducting the experiment for all test cases as illustrated in chapter 5 where
we addressed all the possible combinations of the required test cases based on the
scenarios and hypotheses defined in chapter 4. It also map the findings of the exper-
iment to the hypotheses and research questions discussed before where each section
is going to validate set of hypotheses and answer research questions. The OpenFaas
framework selected in this study has the flexibility to integrate with different con-
tainer orchestrators easily by implementing the openfaas provider which gives the
ability to talk natively to each of the defined container orchestrators that allows
and support all required operations for deploy, create, scale, manage and place any
Serverless function inside the container orchestrator cluster.

6.1 Impact of Container Orchestrators & OpenFaas
Providers on Function Performance

Looking back to the results we discussed on chapter 5, it was clear enough that
all the test cases results were not the same across all defined container orchestra-
tors (Docker Swarm, Kubernetes, Nomad) where performance of deployed Serverless
functions were varied for each container orchestrator as the preferability went to
Docker Swarm. Each container orchestrator has its own way of managing functions
(containers) inside cluster from routing, networking connectivity and scheduling func-
tion as running container. Moreover, in order to invoke all the operations required
for managing functions from OpenFaas perspective, different implementing of Open-
Faas providers are supported to achieve this goal where each container orchestrator
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has different approach of managing functions varied from crud operations, routing
and scaling. The next two subsections will focus on both OpenFaas providers and
container orchestrators architecture.

6.1.1 OpenFaas Providers Architecture

The entry point to manage and communicate with Serverless function for any of the
container orchestrator cluster is from the OpenFaas Gateway which is a required
component that need to be deployed inside the cluster. However, each container
orchestrator defined in this study has its own way of managing, scheduling functions
that can simply run a container inside the container orchestrator cluster .

name: fnl
image: reg/fn1:0.1
fprocess: node index.js

%_ ol " OpenFaaS CRUD Q faas-

P g ~ . Gatewa rovider o
A/ RES OPENFARS y Invoke p @ name: fn2

\> image: reg/fn1:0.1

fprocess: python main.py

Registry

Figure 6.1: OpenFaas Provider Conceptual Diagram [60]

Figure 6.1 shows a conceptual diagram of how OpenFaas framework manage func-
tions when deploy them to container orchestrator cluster where OpenFaas forward
all the requests to the the faas-provider which is responsible for managing Serverless
functions inside the cluster. faas-provider has different implementations based on
container orchestrator.
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Figures 6.2, 6.3 and 6.4 represent the flow of all OpenFaas providers that used to
communicate with all defined container orchestrators where the communication for
management and http function operations were done using RESTful calls where all
these figures represent the routing flow of requests starting from outside clusters to
reach the target deployed Severless function and its noticeable that the whole figures
has prory component which represents part of functionality of faas-provoider where
it handle other operations related to function management inside the container or-
chestrator cluster. External load balancer (HAProxy) distributes the loads between
all container orchestrator nodes where the OpenFaas Gateway is the entry point of
accepting the incoming requests and after that it redirects them to the faas-provider
to handle routing to the deployed function.

Figure 6.2 represents the faas-provider for Docker Swarm where the swarm provider
accepts the requests from OpenFaas Gateway and then based on the function name
it will do a DNS lookup for the function service that is going to distribute the loads
between function replicas in case there are more than one replica exists. On the other
hand, Figure 6.3 represents the faas-provider for Nomad that also accepts the re-
quetss from OpenFaas Gatewat and then it lookups the function name using service
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discovery (Consul) where each deployed function will be registered with the service
discovery so that it can be used later on when requested by the Nomad provider
where it handles the round robin distribution between function replicas if exists.
Finally, Figure 6.4 represents the faas-provider for K8S where routing requests is
more complicated than Docker Swarm and Nomad. Ingress Controller is deployed
inside the K8S cluster where it handles the communication between the external load
balancer and the OpenFaas gateway where it accepts the requests from a deployed
service inside the cluster and then the ingress controller will do the mapping by
calling the ingress object to provide the ingress controller with the endpoint of the
OpenFaas gateway. Once requests reach out the OpenFaas gateway it will redirect
them to the K8S faas-provider to communicate with the function using a service
object in order to match the function name and forward all requests to the desired
function replicas.

6.1.2 Container Orchestrators Architecture

All the container orchestrators selected for this study mainly used for docker based
applications. However, Docker Swarm is the simplest orchestrator among them where
it only supports Docker. On the other hand, Kubernetes is more a complex system
that ship with a collection of components tied together to provide its full function-
ality where it can also run Rkt ! based applications. Moreover, Nomad is a general
purpose solutions that supports containerized, virtualized and standalone applica-
tions using different drivers.

The architecture of Nomad & Docker Swarm are much simpler than Kubernetes
in terms of component numbers and how they interact with each others. Each con-
tainer orchestrator uses different scheduling method in order to assign and run a
workload to one of the cluster members. Invoking scheduler of container orches-
trator for OpenFaas framework is triggered indirectly when placing function inside
any of the container orchestrator cluster by using OpenFaas Gateway API which
get invoked using OpenFaas CII or automatically if auto scaling setting of Serverless
function is enabled. During our experiment, enable auto scaling is one of the settings
used for all test cases so that functions can be created on fly based on workload re-
quests. As we mentioned, that placing new function can be done via OpenFaas API
gateway but the allocation and running the deployed function is the responsibility
of container orchestrator where each one handle it differently.

'Rkt: https://coreos.com/rkt/
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Nomad, starts the scheduling whenever jobs get created that represent the specifi-
cations of tasks (functions) where Nomad should run. Upon job is created, updated
or de-registered, an evaluation is created based on job submission events and then
enqueued into an evaluation broker to be processed later on by a scheduling workers
where they are responsible for de-queuing evaluations from the broker and then to
invoke the relevant scheduler based on job specification. Processing an evaluation is
done by the scheduler where allocation plan is generated which contains set of allo-
cations to create and update. The allocation consists of two main phases, feasibility
checking and ranking where the first phase responsible for filtering unhealthy nodes
and the second phase scores feasible nodes to find the best fit node based on bin
packing. The highest rank node is selected by the scheduler to assign the required
workloads to be executed. On the other hand, Kubernetes starts the scheduling for
new incoming pod objects that wraps the desired functions (containers) or whenever
unscheduled pods are available. The component responsible for scheduling is called
kube-scheduler which run as part of the control plane where each pod has different re-
quirements from other pods as kube-scheduler used the filtering and scoring approach
that similar to Nomad but with less complexity. The kube-scheduler selects the best
nodes based on scoring approach which meets the pod requirements and once that
is done it will notify the API Server. Finally, Docker Swarm starts the scheduling
when the service is submitted which represents the tasks (functions) definitions to be
executed on the cluster nodes where Docker Swarm used a strategy called "spread"
which tries to allocate a service task after do an assessment process of the available
resources for cluster nodes. This simple strategy means that tasks allocations are
evenly spread across the nodes inside the cluster.

Once the functions are allocated inside the cluster, it must be discoverable so that
routing to these function can be achieved. On the previous section we mentioned
how routing is implemented on each OpenFaaS provider where Nomad using service
discovery approach by registering the function once get deployed inside the cluster
by integrating Nomad with service networking solution consul that keep records for
functions. On the other hand, both Docker Swarm & Kubernetes used DNS server
for functions resolution.

Based on our discussion for OpenFaas providers and container orchestrator archi-
tecture and how they differently handle routing, scheduling for Serverless functions
inside cluster and based on the results we obtained from chapter 5 emphasizes our
H,-Hj hypotheses and our main research question RQ1) about the relationship of
Serverless functions and container orchestrators and their impacts on the functions
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performance for response time, throughput and success rate where we able to validate
them statistically using Wilcoxon tests that confirmed our first three hypotheses and
allowed us to reject the Null hypotheses for all metrics

6.2 Workload Requests & Serverless Function Per-
formance

Parallel and sequential are the two types of workloads that is used during this study
which combined with different settings with all test cases. There was a noticeable
differences between the results of the sequential workloads and parallel workloads for
all test scenarios across all container orchestrators because of the requests volume
generated per second was different. However, despite the differences, the perfor-
mance results for both parallel and sequential workloads were not the same for all
container orchestrators where parallel workloads were used with both enabled & dis-
abled auto scaling whereas sequential workloads were used only with disabled auto
scaling that set the number of replicas manually. Performance of Serverless functions
under parallel workloads with auto scaling enabled showed better performance com-
paring parallel & sequential workloads with auto scaling disabled and that also was
noticeable between all the defined container orchestrators as the Docker Swarm gen-
erally had the best result and then it comes K8S and Nomad. The results obtained
from chapter 5 were aligned with our H,-Hg hypotheses and answer to our second
research question RQ2) about how different workloads can be impact the perfor-
mance of deployed Serverless functions from one container orchestrators to another
where response time, throughput and success rate were affected when using different
container orchestrators using the same settings for the same function and we were
able to validate that statistically using Wilcozon test.

6.3 Computational Requirement & Serverless Func-
tion Performance

Multiple Serverless functions were used in this study that represent different opera-
tion types related to CPU/Memory, Network, I/O and chaining functions.
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6.3.1 I/0 Operation

The 1/O operation results obtained in chapter 5 showed a clear image about the
difference between all container orchestrators where throughput of the same deployed
Serverlesss function had different results as the Docker Swarm had the best results for
parallel and sequential workloads with all combinations of test cases. On the other
hand, the response time also had different results for the same deployed Serverless
function where the parallel workloads test cases with auto scaling enabled showed
a clear differences in response time results in all container orchestrators and how
they reacted to high workloads where also Docker Swarm had the best result of
handling the high loads. Moreover, the parallel workloads with auto scaling disabled
show also outperforming of Docker Swarm with handling requests to all created
Serverless function replicas. The results of sequential workloads between all container
orchestrators were close to each other where K8S & Docker Swarm nearly had the
same results and Nomad had the worst among them. Finally, the success rate results
were identical for all test cases except Nomad had 7% error rate in parallel workloads
with auto scaling enabled. The overall results showed that Docker Swarm performed
better than others at least for two defined performance metrics response time and
throughput and its worth to mention that K8S came in second place after Docker
Swarm in terms of which container orchestrators had the best results and Nomad
had the worst one.

6.3.2 CPU/Memory Operation

The CPU/Memory operation is defined in the two tests scenarios: Computation &
Chaining Serverless Functions. The results from the computation scenario showed a
clear difference between the container orchestrators where throughput and response
time of the same deployed function had different results among all container orches-
trators where Nomad had better performance for parallel workloads with auto scaling
enabled than Docker Swarm & K8S. However, Docker Swarm exceeds Nomad and
had better results on parallel workloads with auto scaling disabled where it seems
that the number of replicas on Nomad was not enough to handle all the requests
or there was unexpected issue for replica initialization encountered. The results of
sequential workloads between all container orchestrators were close to each other but
Docker Swarm had the best result obtained there. Finally, the success rate results
were identical for all test cases between all container orchestrators with exceptions in
Nomad that had some error rate 4% for parallel workloads with auto scaling enabled
test cases. The overall results showed that Nomad had better results in parallel
workloads with auto scaling enabled and Docker Swarm in remaining test cases at
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least for two defined performance metrics of response time and throughput.

The results from the Chaining Serverless Functions had two functions talk to
cach other via HTTP requests where one of the function (destination) is the same
function (Matrix multiplication) used on CPU/Memory operation and the (source)
function accepts the requests generated by the faas-exp and forward the payload to
the destination function to return results back to the source function. Adding extra
layer of communication to call CPU/Memory function affected the results where
Docker Swarm this time had best results for throughput and response time specially
in parallel workloads with auto scaling enabled and performed nearly better than
others for sequential & parallel with auto scaling disabled. However, the success rate
was identical for all container orchestrators in sequential workloads with 100% success
rate. Moreover, only Docker Swarm and K8S had similar results on parallel workloads
with auto scaling enabled /disabled as Nomad had high error rate of handling chaining
functions with error rate varied from 4% - 45%. The overall results showed that
Docker Swarm had better results in all test cases at least for two defined performance
metrics of response time and throughput.

6.3.3 Network Operation

The network operation represents a Serverless function that connect to FTP server
in order to download a file located there. The results obtained for network operation
showed that not all container orchestrators had the same result and there was clear
variation in results especially in success rate metric for high workloads with auto
scaling enabled and that could be because of multiple reasons. First reason related
to the capacity of the FTP server of how it can handle high workloads. The second
one related to the ability of container orchestrator provider to serve all submitted
requests. The third reason is about the deployed OpenFaas gateway was unable to
serve all requests which were forwarded from the external load balancer. Comparing
the results of other metrics like response time and throughput, its noticeable the
differences on the parallel workloads for the all container orchestrators. The results
obtained from sequential workloads showed that nearly all container orchestrators
were close to each other with slight differences. The overall results showed that No-
mad had better results in terms of response time and throughput at least for the
parallel workloads but it showed also a bad results for success rate.
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Based on the obtained results from the Computation & Chaining Serverless Func-
tions scenarios, the performance of deployed Serverless function for any operation
defined has different result for performance at and that was aligned with our H;-Hg
hypotheses and answer to our main research question RQ3) that assumes a rela-
tionship between the computational requirements of Serverless function and using
different container orchestrator for all performance metrics defined for this study
where we were able to validate that statistically using Wilcoxon test .

6.4 Programming Languages/Runtimes & Serverless
Function Performance

Multiple programming languages/runtimes were used in this study in order to find
if using different programming languages/runtimes to deploy Serverless function to
different container orchestrators can impact the performance of the function. Four
programming languages/runtimes were used where two of them were complied lan-
guages (Java, Go) and the other two (Python, NodeJS) were interpreted.

6.4.1 Compiled Programming Languages

The obtained results for using Java programming language showed that with high
parallel workloads (5 - 20) & sequential workloads the response time and throughput
for two container orchestrators (K8S, Docker Swarm) were nearly the same except
with Nomad which had better results for both metrics. However, with higher parallel
workloads (50 users) the Nomad had worst results than others where Docker Swarm
had the best result. The success rate for all test cases had identical results except
with one container orchestrator (Nomad) that had the worst result among them.
On the other hand, the obtained results for using Go programming language showed
that response time and throughput were not the same for the parallel workloads in
all cases where the best achieved result was on Docker Swarm and then for K8S.
However, the success rate for Nomad had the worst result among all test cases for
both parallel and sequential workloads where error rate reached a high value 68%
despite the fact that for this function on Nomad the number of iteration runs reached
out to 12 and still had the same bad result where the root cause for this high error
rate because of bad gateway responses that prevent from forwarding the requests to
target function. Finally, the results of sequential workloads for both Docker Swarm
and K8S nearly the same and close to each other with preferability to Docker Swarm.
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The overall results showed that there was a variation in obtained results in terms
of all performance metrics where one container orchestrator (Docker Swarm) had
better results than others. On other hand, the code execution of Go & Java functions
are different where Go is somehow similar to C functions that do the compilation to
machine code and run it directly. However, Java has an additional step where the
generated byte code by the JVM has to be compiled to machine code using just-in-
time (JIT) compiler before get running. With this given fact, the results for Java in
all container orchestrators were better than Go and this is because of the simplicity of
the function written for the experiment between programming languages. Moreover,
the high error rate related to Go functions in Nomad is mainly related to Bad gateway
error which need further investigation.

6.4.2 Interpreted Programming Languages

The obtained results for using Python programming language & NodeJS(Javascript
runtime) showed that with parallel workloads for all test cases the results between all
container orchestrators were not the same for response time and throughput where
the best results achieved by the Docker Swarm, K8S and then Nomad. On the other
hand, the success rate also were only identical for all container orchestrators except
Nomad that had some error rate reached to 29% for NodeJS function. Finally, the
results of sequential workloads for both Docker Swarm and K8S nearly the same
and close to each other with preferability to Docker Swarm. The overall results
showed that there were variations between container orchestrators where one con-
tainer orchestrator (Docker Swarm) achieved better results than others. Moreover,
the selected interpreted languages/runtimes in this case have different behaviours
and architectures that could affect on the results where NodeJS is built based on
Chrome’s V8 engine and supports handling multiple requests at the same time be-
cause of the event-driven non-blocking architecture. However, Python is a single-flow
where requests get processed much slower. Moreover, Python does not support real
multi-threading because of the usage Global Interpreter Lock (GIL)

Based on the obtained results from both compiled and interpreted programming
languages, its clear that the performance of deployed Serverless function using differ-
ent programming languages on different container orchestrators had different results
and noticeable impact on performance which is something aligned with our Hjo-
His hypotheses and provides answer to our main research question RQ4) about the
impact of programming languages/runtimes of deployed Serverless function across
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different container orchestrators where the statistical tests we applied for this pur-
pose using Wilcoxon confirmed these hypotheses.

6.5 Warm/Cold Start & Serverless Function Perfor-
mance

This section represents the results obtained from running function with warm start
following by cold start where functions will be idled for certain amount of time as
specified in chapter 5. Running the function with cold start means that there will
be a some extra latency added before serving the request for unavailable function as
the number of function replicas will be scaled to 0. OpenFaas has the ability to do
a "zero-scale" with the help of component called faas-idler which can be deployed
to the container orchestrators that is responsible of reducing the function to zero
replica. Moreover, the function replicas can be brought back again to the required
amount of replicas when its needed by the faas-provider component. Figure 6.5
represents the flow of how faas-idler works and Listing 4 represents a psuedo code
for faas-idler.
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Figure 6.5: Conceptual diagram of faas-idler [68|

while True:

idle = query_prometheus_for(functions idle over N minutes)

for function in idle:
gateway.scale(0, function)

sleep_for(interval)

Listing 4: Psuedo Code of faas-idler.
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The faas-idler is keep pulling all metrics from the prometheus 2 component to
make sure if the function has been idle for a given amount of time so that it can
be scaled down . On the other hand, if there is an incoming request for the idled
function that means to scale up function to the required amount of replicas so that
it can serve the request. Figure 6.6 represents the flow for serving requests of a
Serverless function on idled state which requires to scale up the function from zero
to the required number of replicas. This introduces a latency as the upstream proxy
(faas-provider) will need to check if there is a function ready for serving requests
before forwarding the them to the target function as it will invoke API gateway for
scaling function to the required number of replicas.

/ Context: OpenFaas \
! . ™\
) functionffunction1 Function
client OpenFaas Gateway A Function Replicas: 0/2
" | Readiness Min Scale: 2
: \
1 .
o -

Cache Max Scale: 5

Query Function Readiness,_ [ N
>

Upstream Proxy Scale to 2/2 4| OpenFaas Backend N
U
. f:
Function
TP Replicas: 2/2

Min Scale: 2

\ Max Scale: 5
/

Figure 6.6: Conceptual Diagram of OpenFaaS scaling Up [68]

The results obtained for warm/cold scenario from as specified in chapter 5 only
relevant for Docker Swarm and K8S as Nomad was disqualified for technical issues on
deploying faas-idler. The results for warm start requests showed that Docker Swarm
had the best results for both parallel and sequential workloads for all test cases at
least for two performance metrics: response time and throughput. On the other
hand, K8S had better results for parallel workloads than Docker Swarm with con-
currency levels (15, 20, 50) in terms of response time where Docker Swarm achieved
better results in other concurrency levels (5, 10).

2prometheus: https://prometheus.io/
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Based on the obtained results from warm & cold start scenario showed that
the results were not the same between Docker Swarm and K8S where at least two
performance metrics were different as Docker Swarm achieved better results than K8S
in most test cases. The observed results showed that response time and throughput
were affected by using different container orchestrators as results were different for
both cold and warm start. The throughput results of cold start comparing to the
warm start were much smaller because of the extra latency added and since enforcing
the cold start will not be maintained long time because the number of ready replicas
will be available after scaling up and that explains why the cold response time were
close to the warm start and sometime smaller. The results we obtained from applying
median and Wilcozon tests for both cold & warm start showed that the impact was
limited to response time and throughput only which aligned with Hy3 & Hy4 and
answer to our main research question RQ5). However, the success rate for all test
cases in this scenario were not statistically significant.
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Chapter 7

Conclusion

7.1 Conclusions

The era of Severless computing became an attractive topic recently in IT industry
and academia specifically for IoT and Edge Computing researches. Studying perfor-
mance of Serverless is a common topic in literature review where it mainly focused
on studying the Serverless on public cloud using managed Serverless services like
AWS Lambda, Google Cloud Functions, Azure Functions and more like the works
presented by [113] [95] [103] [100]. Most of the works focused on performance metrics
like response time & throughput where few of them illustrated how they conducted
their experiments by using some custom benchmark tools they developed for that
purpose. On the other hand, there were few interesting researches that studied
Serverless on on-premise infrastructure using open source Serverless frameworks like
OpenFaaS, Kubeless and Fission where very limited researches studied the perfor-
mance of Serverless functions that using single container orchestrators like K8S as
presented by [86] [105]. This study focused on studying the performance of Server-
less using different container orchestrators like Docker Swarm, K8S and Nomad as
no previous works tried to studied the impact of the different container orchestrators
on the performance of deployed Serverless functions. Moreover, none of the pre-
vious works that studied the Serverless on on-premise infrastructure used multiple
programming languages/ runtimes, complex operations like: CPU/Memory, I/O or
studied the impact of cold start. Finally, none of the previous works either public
or on-premise studies illustrated fully details of how to conduct, aggregate, analyze
and visualize results for their studies.
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Based on our knowledge, this is the first research that studied the impact of con-
tainer orchestrators on Serverless functions performance with large number of test
cases that cover different scenarios using various types of computations and different
programming languages/runtimes.

Based on the obtained results from this study, the following conclusion can be
drawn.

— Container orchestrators have impacted the performance of Server-
less function: The results we obtained from conducting this study showed
that using different container orchestrators have impacted the performance of
Serverless function where it consider to be a good insight for anyone want
to use Serverless functions with container orchestrators for different purposes
especially for IoT and edge computing applications where generally Docker
Swarm performed better than other container orchestrators.

— The performance of Servelress function that used different generated
workloads have impacted by container orchestrators: In this study
we generated two types of workloads (parallel, sequential) with the capability
of auto scaling provided by the OpenFaas framework. The results obtained
from the generated test cases were not the same for the parallel & sequential
workloads where it reached 9X-10X performance in sequential workloads for
Serverless function written in Java and deployed to Nomad. Moreover, using
different concurrency levels for parallel workloads have noticeable impact on
performance metrics.

— The performance of Servelress function based on different compu-
tation have impacted by container orchestrators: Our results showed
that implementing Serverless function with different operation types had differ-
ent results between container orchestrators where deploying Serverless function
with I/O operation were varied and the Docker Swarm performed better than
others. On the other hand, deploying Serverless function with CPU/Memory
operation had been racing between Nomad & Docker Swarm especially in par-
allel workloads. finally, deploying Serverless function with network operation
had nearly the same results across all test cases except on Nomad where it
achieved the worst success rate between them.
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— The performance of Servelress function written in different program-
ming languages/runtimes have impacted by container orchestrators:
Our results showed that implementing Serverless function using interpreted
languages like Python & NodeJS have different results between container or-
chestrators where Docker Swarm performed better than others. On the other
hand, the complied language like Java, Nomad performed better than others.
However, the other complied language (GO) had better performance on Docker
Swarm instead. These results could help in selection which programming lan-
guage/runtime to use with which container orchestrator.

— The performance of Servelress function in warm & cold started cases
have impacted by container orchestrators: The results of this study
showed that both response time & throughput have impacted by container
orchestrators for warm & cold start test cases especially in parallel workloads
where the preferability goes to Docker Swarm.

7.2 Threats to Validity

On this study our main goal is to find if there is a relationship between the per-
formance of the Serverless function and container orchestrators. We were able to
validate that based on the set of independent variables defined for this study where
our candidate Serverless framework selected for this purpose was OpenFaas that has
different interfaces for each container orchestrator responsible for routing, placing
container and function management inside cluster. Moreover, the internal archi-
tecture of the framework itself where it contains several component like OpenFaas
Gateway which acts as an entry point of the framework in order to handle routing for
provider based on the selected container orchestrator. These factors could have im-
pacts on dependent variables which measure the performance of Serverless function.
On the other hand, we evaluated 9 Serverless frameworks so that we can judge better
which is the suitable Serverless framework that we can use in this study based on
different criteria like supporting multiple container orchestrators where we did an ex-
periment to run each selected Serverless frameworks that support multiple container
orchestrators using simple hello world function but we did not conduct the same test
cases that we did for OpenFaas to other Serverless candidates frameworks so that
we can compare their results with the one we got from running OpenFaas to make
sure if we can generalize our results to other Serverless frameworks. This study fo-
cused on studying the performance of Serverless functions using specific metrics that
includes response time, throughput and success rate because they considered to be
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critical factors in real software environment which could have hundreds of Serverless
functions under different configuration and settings with variation on function im-
plementation logic, programming languages, frequency of functions invocation which
explains the reasons for including a lot factors where we able to measure and validate
what we proposed for the relationship between all factors and the performance met-
rics. However, since we are using different combinations of settings between factors
during our experiment, this could be a threat to our construct validity that may add
some ambiguity about determining which factor causes the impact. Finally, we were
able to measure and validate the relationship between defined variables statistically
using Wilcozon tests where our assumption aligned with statistical tests we applied
during the experiment and we can conclude that the value of static power is relatively
high since we reject the Null hypothesis in most of the test cases which minimize
from threats to our conclusion validity.

7.3 Future Works

We believe there are further opportunities to extend and continue on this research
on the following areas:

— Conducting more complex test cases: We can extend the complexity
of the test cases by simulating a real software application that can deal with
database transactions, external communication with other systems and increase
the number of loads to thousands of users.

— Add support for asynchronous functions: All the conducted test cases
were based on synchronous operations where deploying function that use mes-
sage queues is doable as most of the Serverless frameworks support that.

— Use test cases that cover authentication and authorization scenarios:
We ignore the authentication and authorization for all our test cases which can
be added in future to measure the impact of enabling them on performance.

— Deploy machine learning models: Deploying Serverless function that sup-
ports machine learning models is also another work that can be added to see
how machine learning model can behave among different container orchestra-
tors when get deployed as part of Serverless functions.
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Appendix A

Serverless Functions

'use strict'
const fs = require('fs');

module.exports = async(event, context) => {
console.log(event);
console.log(context);
let writer = await fs.createWriteStream('/tmp/log.txt', {
flags: 'a' // 'a' means appending (old data will be preserved)

DR

writer.write(event['body']);
return context
.status(200)
.succeed(event['body'])

Listing 5: I/O Function
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'use strict';

const clock = require('./clock.js');

exports.add (m1, m2) => {
const t0 = clock.clock();

let result = [];
for (let i = 0; i < ml.length; i++) {
result[i] = [];
for (let j = 0; j < m2[0].length; j++) {
result[i] [j] = m1[i][j] + m2[i][j];
}
}

console.log("Matrix.add time: " + clock.clock(t0));
//console.table(mResult)

return result;

};

exports.create = (m, n) => {
const t0 = clock.clock();

let matrix = [];
for (let i = 0; i < m; i++) {
let row = [];
for (let j = 0; j < mn; j++) {
// initialized 'random'
row[jl =1 * j;
}
matrix[i] = row;

}
console.log("Matrix.create time: " + clock.clock(t0));
//console.table(matriz)

return matrix;

};

exports.multiply = (ml, m2) => {
const t0 = clock.clock();
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let result = [];
for (let i = 0; i < ml.length; i++) {
result[i] = [];
for (let j = 0; j < m2[0].length; j++) {
let sum = 0;
for (let k = 0; k < m1[0].length; k++) {
sum += mi[i] [k] * m2[k][j];
}
result[i] [j] = sum;
}
}

console.log("Matrix.multiply time: " + clock.clock(t0));
//console.table(mResult)

return result;

};

exports.subset = (m1, offset_x, offset_y, width, height) => {
const t0 = clock.clock();

let result ;
for (let i = offset_x; i < ml.length && i < offset_x + width; i++) {

result[i] = [];
for (let j = offset_y; j < m1[0].length && j < offset_y + height; j++) {

result[i - offset_x][j - offset_y]l = mi[i][j];
}
}

console.log("Matrix.subset time: " + clock.clock(t0));
//console.table(mResult)

return result;

};

Listing 6: Matrix Helper
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'use strict'
const Matrix = require("./matrix.js");

module.exports = async(event, context) => {
console.log(event) ;
console.log(context);
let param = 1;
const isExist = 'param' in event['query'];
if (isExist) {
param = event['query']['param']

}
console.log('Input param=' + param);
const a = await Matrix.create(param, param);
const b = await Matrix.create(param, param);
const resultBig = await Matrix.multiply(a, b);
const result = {
'result': await Matrix.subset(resultBig, 0, 0, 10, 10)

};

return context
.status (200)
.succeed(result)

Listing 7: Matrix Function
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'use strict'
const ftp = require("basic-ftp");
const fs = require('fs');

module.exports = async (event, context) => {

const ftpHost = process.env.ftp_host;
const ftpUser = process.env.ftp_user;
const ftpPassword = process.env.ftp_password;

if (!ftpHost) {
return context.status.fail('ftp Host is missing')
3
if (!'ftpUser) {
return context.status.fail('ftp User is missing')
¥
if (!'ftpPassword) {
return context.status.fail('ftp Password is missing')

}

let result = {};
let ftpResult = await ftpHandler (ftpHost, ftpUser, ftpPassword);
let statusCode = 200;
if (!'ftpResult) {
statusCode = 400;
ftpResult = 'Error on downloading file from FTP'
result['error'] = ftpResult
} else{
result['status'] = 'done';

}

return context
.status(statusCode)
.succeed({'result': result})

}

async function ftpHandler (host, user, password) {
let result = null;
const client = new ftp.Client();
client.ftp.verbose = true;
try {
await client.access({
host: host,
user: user,
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password: password,
B
let writer = fs.createWriteStream('/tmp/test.txt', {
flags: 'w' // 'a' means appending (old data will be preserved)
b
await client.downloadTo(writer, "test.txt");
result = true
}
catch(err) {
console.log(err)
result = false
}
client.close();
return result;

Listing 8: Network Function

'use strict';
const request = require('request');

function doRequest(headers, url, data) {
return new Promise(function (resolve, reject) {
request.post ({
headers: headers,
url: url,
body: data
}, function (error, res, body) {
if (lerror && res.statusCode == 200) {
console.log(body) ;
console.log(res);
resolve(body) ;
} else {
console.log(error);
reject(error) ;
}
b
b;
}

module.exports = async(event, context, callback) => {
const gateway_endpoint = process.env.gateway_endpoint;

if (!gateway_endpoint) {
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return context.status.fail('Gateway URL is missing')

}
let param = 1;
const isExist = 'param' in event['query'];

if (isExist) {
param = event['query'] ['param']

}
// This call to a matriz function
const url = gateway_endpoint + "/function/matrixfunction?param=" + param;
let res = await testEntry(url);
if (res) {
return context

.status (200)

.succeed(res)
} else {

return context.fail({"result": "Error while trying to call function"});
}
+;

Listing 9: Chaining Function

package function

// Handle a serverless request
func Handle(req [lbyte) string {
return "Hello From Go Serverless Function"

3

Listing 10: Go Function
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def handle(event, context):
return "Hello From Python Serverless Function"

Listing 11: Python Function

'use strict'

module.exports = async (event, context) => {
const result = {

'status': 'Hello From NodeJS Serverless Function'
}
return context

.status (200)

.succeed(result)

Listing 12: Javascript Function

package com.openfaas.function;

import com.openfaas.model.IHandler;
import com.openfaas.model.IResponse;
import com.openfaas.model.IRequest;
import com.openfaas.model.Response;

public class Handler implements com.openfaas.model.IHandler {
public IResponse Handle(IRequest req) {
Response res = new Response();

res.setBody("Hello From Java Serverless Function");

return res;

Listing 13: Java Function
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Appendix B

Faas-Exp Configurations

experiment:

server: gateway.openfaas.local
port: 80
number_of_runs: 6
number_of_requests: 35000
delay_between_runs: 1
replicas:

-1

- 10

- 20
concurrency:

-5

- 10

- 20

- 50
result_dir: /home/centos/result

functions:

- name: warmfunction
inactivity_duration: 9
chunks_number: 6
yaml_path: functions/warm-starts-scenarios/k8s/warmfunction.yml
environment:

read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/warmfunction
data: "Hello warmfunction on k8s"
http_method: POST
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- name: gofunction
yaml_path: functions/runtimes-scenarios/go/common/gofunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/gofunction
http_method: POST

- name: javafunction
yaml_path: functions/runtimes-scenarios/java/common/javafunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/javafunction
http_method: POST

- name: nodefunction
yaml_path: functions/runtimes-scenarios/nodejs/common/nodefunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/nodefunction
http_method: POST

- name: pythonfunction
yaml_path: functions/runtimes-scenarios/python/common/pythonfunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/pythonfunction
http_method: POST

- name: iofunction
yaml_path: functions/computation-scenarios/io/common/iofunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5m5s
api:
uri: function/iofunction
http_method: POST
data: >
Lorem Ipsum is simply dummy text of the printing and typesetting industry
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- name: matrixfunction
yaml_path: functions/computation-scenarios/matrix/common/matrixfunction.yml
environment:
read_timeout: bmbs
write_timeout: 5mbs

api:
uri: function/matrixfunction
param:
min: 10
max: 200

http_method: POST

- name: consumerfunction
yaml_path: functions/composite-scenarios/consumer/swarm/consumerfunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
gateway_endpoint: http://gateway:8080

api:
uri: function/consumerfunction
param:
min: 5
max: 150

http_method: POST
depends_on: matrixfunction

- name: ftpfunction
yaml_path: functions/computation-scenarios/network/common/ftpfunction.yml
environment:

read_timeout: 5mbs
write_timeout: 5mbs
ftp_host: 10.0.2.207
ftp_user: ftpuser
ftp_password: ftppassword
api:

uri: function/ftpfunction
http_method: POST

Listing 14: K8S Configuration
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experiment:

server: gateway.openfaas.local
port: 80
number_of_runs: 6
number_of_requests: 35000
delay_between_runs: 1
replicas:

-1

- 10

- 20
concurrency:

-5

- 10

- 20

- 50
result_dir: /home/centos/result

functions:
- name: warmfunction
inactivity_duration: 9
chunks_number: 6
yaml_path: functions/warm-starts-scenarios/common/warmfunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/warmfunction
data: "Hello warmfunction on swarm"
http_method: POST

- name: gofunction
yaml_path: functions/runtimes-scenarios/go/common/gofunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/gofunction
http_method: POST

- name: javafunction
yaml_path: functions/runtimes-scenarios/java/common/javafunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
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uri: function/javafunction
http_method: POST

- name: nodefunction

yaml_path: functions/runtimes-scenarios/nodejs/common/nodefunction.yml
environment:

read_timeout: 5mbs

write_timeout: 5mbs
api:

uri: function/nodefunction

http_method: POST

name: pythonfunction
yaml_path: functions/runtimes-scenarios/python/common/pythonfunction.yml
environment:
read_timeout: bmbs
write_timeout: 5mbs
api:
uri: function/pythonfunction
http_method: POST

name: iofunction
yaml_path: functions/computation-scenarios/io/common/iofunction.yml
environment:

read_timeout: 5mbSs

write_timeout: 5mbs
api:

uri: function/iofunction

http_method: POST

data: >

Lorem Ipsum is simply dummy text of the printing and typesetting industry|

name: matrixfunction
yaml_path: functions/computation-scenarios/matrix/common/matrixfunction.yml
environment:

read_timeout: b5mbs

write_timeout: 5mbs

api:
uri: function/matrixfunction
param:
min: 10
max: 200

http_method: POST

name: consumerfunction
yaml_path: functions/composite-scenarios/consumer/swarm/consumerfunction.yml
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environment:
read_timeout: 5mbs
write_timeout: 5mbs
gateway_endpoint: http://gateway:8080

api:
uri: function/consumerfunction
param:
min: 5
max: 150

http_method: POST
depends_on: matrixfunction

- name: ftpfunction
yaml_path: functions/computation-scenarios/network/common/ftpfunction.yml
environment:

read_timeout: 5mbs
write_timeout: 5mbs
ftp_host: 10.0.2.207
ftp_user: ftpuser
ftp_password: ftppassword
api:

uri: function/ftpfunction
http_method: POST

Listing 15: Docker Swarm Configuration
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experiment:

server: gateway.openfaas.local
port: 80
number_of_runs: 6
number_of_requests: 35000
delay_between_runs: 1
replicas:

-1

- 10

- 20
concurrency:

-5

- 10

- 20

- 50
result_dir: /home/centos/result

functions:
- name: gofunction

yaml_path: functions/runtimes-scenarios/go/common/gofunction.yml

environment:
read_timeout: 5mbs
write_timeout: 5mbs

api:
uri: function/gofunction
http_method: POST

- name: javafunction
yaml_path: functions/runtimes-scenarios/java/common/javafunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/javafunction
http_method: POST

- name: nodefunction
yaml_path: functions/runtimes-scenarios/nodejs/common/nodefunction.yml
environment:
read_timeout: 5mbs
write_timeout: 5mbs
api:
uri: function/nodefunction
http_method: POST
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- name: pythonfunction

yaml_path: functions/runtimes-scenarios/python/common/pythonfunction.yml
environment:

read_timeout: 5mbs

write_timeout: 5mbs
api:

uri: function/pythonfunction

http_method: POST

name: iofunction
yaml_path: functions/computation-scenarios/io/common/iofunction.yml
environment:

read_timeout: 5mbs

write_timeout: 5mbs
api:

uri: function/iofunction

http_method: POST

data: >

Lorem Ipsum is simply dummy text of the printing and typesetting industry|

name: matrixfunction
yaml_path: functions/computation-scenarios/matrix/common/matrixfunction.yml
environment:

read_timeout: 5mbs

write_timeout: 5mbs

write_debug: true

api:
uri: function/matrixfunction
param:
min: 10
max: 200

http_method: POST

name: consumerfunction
yaml_path: functions/composite-scenarios/consumer/nomad/consumerfunction.yml
environment:

read_timeout: b5mbs

write_timeout: 5mbs

gateway_endpoint: http://10.0.2.150

api:
uri: function/consumerfunction
param:
min: 5
max: 150

http_method: POST
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depends_on: matrixfunction

- name: ftpfunction
yaml_path: functions/computation-scenarios/network/common/ftpfunction.yml
environment:

read_timeout: 5mbs
write_timeout: 5mbs
ftp_host: 10.0.2.205
ftp_user: ftpuser
ftp_password: ftppassword
api:

uri: function/ftpfunction
http_method: POST

Listing 16: Nomad Configuration
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version: 1.0
provider:
name: openfaas
gateway: http://gateway.openfaas.local
functions:
matrixfunction:
lang: nodel2
handler: ./matrixfunction
image: mabuaisha/matrixfunction:latest
labels:
com.openfaas.scale.min: 1
com.openfaas.scale.max: 20
secrets:
- dockerhub

Listing 17: OpenFaas Function Sample Configuration

171




	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Research Questions
	Structure of thesis

	Background
	Microservices
	Virtualization
	Cloud Computing
	Docker
	Container Orchestrations
	Kubernetes
	Docker Swarm
	Nomad

	Serverless Computing
	Serverless Frameworks
	OpenFaas
	OpenWhisk
	IronFunctions
	Fn


	Literature Review
	Serverless Computing on Public Cloud
	Serverless Computing on On-Premise Infrastructure
	Discussion and Conclusion

	Research Methodology
	Research Approach
	Data Collection
	Data Analysis
	Serverless Frameworks Evaluation
	Performance Metrics and Factors
	Performance Metrics
	Performance Factors

	Performance Evaluation Procedures of Deployed Serverless Functions
	Evaluation Architecture
	Infrastructure Layer
	Application Layer

	Experiment Design
	Experiment Hypotheses
	Experiment Metrics
	Experiment Variables
	Experiment Flow and Scenario
	Environment Setup
	Experiment Tool


	Experiment Results
	Computation Scenarios
	I/O Operation
	CPU/Memory Operation
	Network Operation

	Programming Languages/Runtimes Scenarios
	Python Function
	NodeJS Function
	Java Function
	Go Function

	Chaining Serverless Functions Scenario
	Warm and Cold Start Scenario

	Discussion
	Impact of Container Orchestrators & OpenFaas Providers on Function Performance
	OpenFaas Providers Architecture
	Container Orchestrators Architecture

	Workload Requests & Serverless Function Performance 
	Computational Requirement & Serverless Function Performance
	I/O Operation
	CPU/Memory Operation
	Network Operation

	Programming Languages/Runtimes & Serverless Function Performance
	Compiled Programming Languages
	Interpreted Programming Languages

	Warm/Cold Start & Serverless Function Performance

	Conclusion
	Conclusions
	Threats to Validity
	Future Works

	References
	Serverless Functions
	Faas-Exp Configurations

